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Abstract

This thesis addresses several fundamental measurement issues in valuing natural capital

services for the explicit inclusion of natural resources in measures of productivity.

By addressing these measurement issues, this thesis considers the economy and the

environment as a whole, ensuring the connection of traditional measures of productivity

and natural capital are more prominently recognised. The thesis consists of two sections.

The first section (Chapter 2) focuses on the effect of including subsoil assets in mining

sector productivity estimates. Three different methods for estimating natural capital

user cost values are considered. Productivity measures, which include the service flow

of natural capital, require user cost values for natural capital to be the same as the

current standard methodology for producing capital service aggregates (Organisation for

Economic Co-operation and Development [OECD] 2001). The results show that while

the different methods yield different multifactor productivity (MFP) estimates, the most

influential adjustment to traditional productivity measures is the inclusion of natural

capital. This generated substantial productivity gains for the Australian mining sector,

where natural capital added at least 1.0 percentage point growth to annual productivity

from 1995–1996 to 2015–2016. The second section comprises Chapter 3 and Chapter

4. The focus here is on enhancing the agricultural sector’s productivity estimates by

accounting for changes in the quality of agricultural land. Chapter 3 utilises a novel

Australian administrative dataset of land sales to construct constant-quality land-price

indexes. This chapter considers four hedonic spatial pricing models for valuing agricultural

land, and two different approaches to creating constant-quality price indexes. Chapter

4 provides adjusted productivity estimates of the agriculture sector. Accounting for

the quality of agricultural land reduces annual productivity growth by 1.3 percentage

points each year between 1995–1996 and 2017–2018. The connecting link between

all the chapters is that they were motivated by the need to enhance productivity

estimates through the explicit inclusion of natural capital. The results from this thesis

inform trade-offs of natural resources against environmental effects, and that, in turn,

support sustainable development that fully considers intergenerational equity and income

distribution resulting from the use of natural capital.
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Chapter 1

Introduction

1.1 Background and Importance of Research

Traditional measures of economic growth typically do not fully consider the role of the

environment in the productive process. Although a country’s income is generated through

the depletion of natural capital (for example, subsoil assets) in the value of gross domestic

product (GDP), the role of natural capital as an input in growth measures of traditional

multifactor productivity (MFP) is frequently ignored. While the indivisibility between the

economy and natural capital has been recognised internationally, progress in ensuring this

connection in traditional measures of productivity has lagged. If these links are not soon

recognised and accounted for, economic development will likely continue at the expense

of the quality and quantity of the world’s natural capital. The effects of this degradation

will, in time, show on each nation’s balance sheet as well as in lowered productive capacity

over time.

The enduring gap of not including natural capital in productivity measures raises

important research questions: How to account for natural capital depletion? Will a failure

to account for this depletion be a risk to the future wellbeing (increase in material standards

of living)? To answer these questions, this thesis explicitly values natural capital and its

service flows in the context of productivity analysis. The secondary research questions are:

What are the economic consequences of the extraction and depletion of subsoil assets on

potential productivity growth for the mining sector? What are the effects on productivity

of the agricultural sector over time from accounting for land quality? These research

1



questions all query how to include natural capital in economic measures of productivity.

The importance of the research agenda has not been lost on international organisation.

According to the World Bank (2011), a resource-rich country is highly dependent on

natural capital as it is the source of many ecosystem services. These services are often

undervalued or renewable only under restricted management regimes. Therefore, there is

a growing interest in whether economic and other human activity leads to the degradation

of ecosystems. Thus, it reduces the capacity for ecosystems to provide the services on

which people depend.1

MFP is an indicator of innovation, as it captures increases in productivity from utilising

a given set of resources more efficiently (World Bank 2011). Typically, MFP represents

technology change and other factors not traditionally included in standard labour inputs

and produced capital. Therefore, estimated MFP growth is likely to include effects from

the quantity and quality of natural capital used by production processes, as they are

typically excluded as inputs from the calculations. For example, changes to quality

of land has the potential to the measure of agricultural productivity. In Australia,

official productivity statistics do not yet explicitly include the services provided by

natural capital both at the national and regional levels. This deficiency is because the

measurement of environmental inputs contains numerous unresolved issues in current

economic-environment accounting frameworks (UN et al. 2014a and UN et al. 2014b).

Despite its importance, measurement of the value of natural capital by official government

agencies is still in its infancy (Schreyer & Obst 2015). Estimates on the stock of produced

assets (such as machinery, equipment and buildings) and information on land value vary

between countries. Only a few nations release balance sheets that include natural capital,

and even fewer include estimates of environmental assets (Schreyer & Obst 2015). As a

result, established national datasets have not supported the analysis of the connections

between the sustainability of economic growth, wealth and, more generally, wellbeing

(OECD 2011). This is supported by a recent study by Freeman, Inkaar and Diewert

(2021). The authors found that cross-country productivity comparisons when including

1The issue of sustainability of ecosystems is acknowledged in several global policy forums, most notably
the outcomes following Rio+ G20 and United Nations Convention on Biological Diversity. Over the
past 15 years, the World Bank has played a prominent role in advancing broad measures of national
wealth (World Bank 2011) with global initiatives such as the Bank’s Wealth Accounting projects and the
Economics of Ecosystems and Biodiversity (TEEB) and Valuation of Ecosystem Services (WAVES).
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natural capital are challenging due to the assumption that all countries use the same set

of natural resources. This assumption does not hold because countries do not extract all

the same resources. By assigning ‘missing natural resources’ a reservation price2 equal to

the world resource price, the authors found a substantial impact on relative productivity

levels for countries heavily reliant on natural resources.

In the case of ecosystem service, the application to productivity measurement is even

more challenging. As terrestrial and marine ecosystems are complex and dynamic, the

estimation of a simple measure of depletion based on the approach used for non-renewable

and renewable resources, may potentially understate ecosystem degradation. The effect

may distort people’s expectations of ecosystem prices and, therefore, the asset-inflation

rate. For example, agricultural land prices may not reflect the total cost of land

management practices. However, when soil quality is reduced, production yield and

productivity tends to also fall (Azad & Ancev 2020). In this context, being able to link

capital accounting theory and ecosystem accounting provides the platform to improve

estimates of productivity.

Statistical offices, such as the Australian Bureau of Statistics (ABS), do not record the

complete set of environmental assets defined in the 2008 System of National Accounts

(2008 SNA) (UN et al. 2009) in the national balance sheets.3 The ABS only measures land

area (the ‘space’ attribute of land) with no adjustment made for quality. Consequently,

it does not account for soil degradation due to land management choices or exogenous

factors. Thus, the role of soil quality as a factor of production is ignored. This measure

also ignores the productive limits of agricultural land and other critical environmental

inputs such as the management of soil resources.

Natural capital depletion is similarly omitted in mining productivity derivations (Syed

et al. 2015). A recent study by Brandt et al. (2017) showed that the direction of the

change to productivity growth relies on the rate of change of labour and capital and

natural capital extraction. Thus, excluding natural capital could lead to productivity

being underestimated during resource booms, where other factors of production such as

2The reservation prices refer to the price of an input that is not used in production, that is, a price
sufficient enough for demand to be zero as defined by Hicks (1940)

3The Australian national balance sheets include environmental assets such as land, subsoil assets and
native standing timber. Water and fish stocks have not been incorporated due to valuation difficulties
and a lack of available data.
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produced capital increase quicker than natural resource inputs. Therefore, a failure to

account for changes in natural capital distorts one’s view of productivity performance

and, importantly, the extent to which gains in productivity are sustainable.

To illustrate the vital role of natural resources in productivity measurement, Figure 1.1

shows Australia’s official MFP statistics produced by the ABS for the 12 core market

sectors. Notably, the ABS-defined sector ‘Agriculture, forestry and fishing’ has the

strongest productivity gains, notwithstanding significant declines in productivity during

drought periods. In this sector, from 1989–1990 to 2015–2016, productivity improved by

almost 90 per cent, in contrast to the market sector productivity growth, which increased

by only 18 per cent. Further, mining sector productivity over the same period recorded

the weakest productivity gains. The overall view of Australia’s productivity performance

would be different without the significant productivity performance of the Agriculture,

forestry, and fishing sector and significant productivity adjustment of the mining sector.

Figure 1.1 – MFP estimates across 12 selected industries using quality adjusted
labour (1989–1999 to 2019–2020)

Source: ABS Estimates of Industry Multifactor Productivity (ABS 2020)

One straightforward strategy to help ensure natural capital is used efficiently over time

is to include its contribution to productivity. This is because when making choices about

policy, decision-makers are using flawed economic measures - flawed because they do not

(for the most part) account for effects of production activity on the natural environment.
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The OECD has shown increasing interest in measuring forms of productivity that are more

inclusive of natural capital, but these efforts have so far had limited (if any) application

in decision-making processes.

This thesis contributes to enhancing measures of productivity by highlighting the potential

mismeasurements in official MFP statistics due to failing to account for natural capital

and providing solutions to integrate natural capital into existing measures. First, the

results show that official MFP statistics provided by the ABS overstate the growth of

capital input by excluding subsoil assets. Second, the thesis provides empirical evidence

that the simple mean or median land price index rises more rapidly than constant-quality

price indexes, implying a rise in the quality of agricultural land. This conclusion is

strengthened by the outcome that different hedonic models imply similar constant-quality

price changes compared to the mean and median land price index. Third, it shows the

ABS method, which fails to recognise changes in land quality, understates the growth of

agricultural capital input and thus overstates MFP growth. Therefore, this thesis responds

to several fundamental measurement issues that have not received adequate attention in

the literature, highlighting the role of natural capital in economic growth.

1.2 Natural Capital

Natural capital can be defined as the world’s stocks of natural assets which include

geology, soil, air, water and all living things. It is from this natural capital that

humans derive a wide range of services, often called ecosystem services, which make

human life possible.

- World Forum on Natural capital (2020, para. 1)

Natural capital is recognised as an essential economic asset4 that has the potential for

4In economic theory, viewing natural resources as capital goes back over 200 years to classical
economists such as Faustmann and Ricardo (Gaffney 2008), with the modern treatment pioneered by
Hotelling (1931). Since the 1970s, work by Weitzman (1976), Hartwick (1990), Heal (1998), Arrow et al.
(2004), Nordhaus (2006) and Arrow et al. (2012) has resulted in the development of a robust conceptual
framework for treating natural stocks as capital. Despite this strong theoretical support, often the value
of natural capital into national balance sheets has lagged for many critical stocks such as biodiversity,
wetlands and forests (UN 2014a).
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long-term use in terms of productivity and welfare. A long history exists to integrate

natural capital to include the stocks and flows of natural resources present in a country

(such as timber, fish, water, mineral and energy resources, land and soil) into the national

accounts (see Harrison 1993; Vanoli 1995). To date, however, no definitive method has

been arrived at to account for natural capital in national accounts. Ayres and Kneese

(1969) and Meadows et al. (1972) all highlighted the importance of the environment

for economic development, providing impetus for economists to analyse these issues by

including non-renewable resources in macro-economic models. Weitzman (1976) later

established a welfare measure of GDP in which national income equals the return to

wealth. Collectively, these studies began the ‘green accounting literature’, which analyses

the relationship between concepts such as income, wealth and welfare in macro-economic

models, including the role of natural resources (Heal & Kriström 2005).

While the green accounting literature offered a promising way forward, the approach did

not lead to integrate natural capital into national accounts measures.This is because it

was established at a very high level of abstraction without searching any longer for any

relationship to actual national accounting measurements’(Vanoli 2005). Consequently,

national statistical agencies followed a more empirical approach, initially attempting

to integrate environmental and natural resources into the national accounts. This was

conducted during the 1970s and 1980s in France (Interministerial Commission for Natural

Heritage Accounts et al. 1986) and Norway (Alfsen et al. 1987).

The methods used to evaluate ecosystems and the concepts of value and approached to

valuation for national accounting purposes are not the same as those typically applied

by economists. There are several differences in the concept in comparison to the welfare

theoretic approach, specifically between exchange values and shadow prices.5 This issue

arises both in the measurement of wealth (Arrow et al. 2003; World Bank 2011) and

when deriving the change in surpluses of individual economic agents. Some sections

of the economics community are critical of environmental-economic accounting because

national accounts exclude the valuation of consumer surplus (Heal Kriström 2005)

5In national accounting, exchange values is considered the value at which goods and services and
assets, are sold regardless of the prevailing market conditions. This implies that externalities are not
market transactions and as such are excluded. In contrast, the concept of shadow prices used in
wealth accounting incorporate the effects of externalities to reflect the marginal contributions of assets
to well-being (Dasgupta 2009)

6



In 1993, the UN Statistical Commission released the Handbook of National Accounting:

Integrated Environmental and Economic Accounting. The most prominent subsequent

extension to national accounting literature is a framework known as the System of

Environmental-Economic Accounting (SEEA) (UN et al. 2014a). The Commission’s

adoption in 2012 of the SEEA Central Framework (CF) highlights the importance of

environmental assets and the measurement of natural resources.

The SEEA Experimental Ecosystem Accounting (EEA) (UN et al. 2014b) considers the

interactions between individual resources to measure the broad set of benefits that arise

from ecosystems. The principle of ecosystem accounting is to value the material and

non-material benefits derived from ecosystems. While the SEEA CF and SEEA EEA

provide a landmark framework, some challenges remain in measuring ecosystem assets

and their services and in integrating them into the national accounts system, noting

that the SEEA EEA applied many core accounting concepts developed in the 2008 SNA.

For example, the boundary of economic activity, the types of accounts and principles of

valuation, and the definitions and classifications of economic units are all aligned with

the two frameworks.

1.3 Structure of the Thesis

The first section (Chapter 2) of the thesis focuses on the effect of including subsoil

assets in mining sector productivity estimates, and the second section (Chapter 3 and

Chapter 4) focuses on enhancing agricultural sector productivity estimates by accounting

for changes in the quality of agricultural land. This entails using frameworks that are

coherent with the existing 2008 SNA framework used by the national statistics system

to compile indicators of economic growth. This consistency with SNA means that

productivity measures can be integrated into ‘official’ indicators that are widely used

in policy formulation.

How to measure contributions of natural capital to productivity change is an emerging area

of research, as more environmental datasets have been recently made publicly available.

Despite theoretical developments in this area, it is unresolved as to which user cost

method best characterises contributions of natural capital. Chapter 2 provides a concise

explanation of the mechanics underlying different user cost of natural capital methods.
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Three user cost of natural capital approaches are used to test the robustness of the results

to select methods of measurement. More conclusive findings of the contribution of subsoil

assets to the mining sector’s productivity growth can also be drawn from the analysis.

The first method is the unit resource rent method suggested by Brandt et al. (2017) and

adopted by the World Bank (Lange et al. 2018); the second method is the residual value

method recommended by the UN SEEA 2012 (UN et al. 2014a; UN et al. 2014b); and the

third method, proposed by Diewert and Fox (2016a), is a variant of the traditional user

cost. The contribution of this chapter is twofold: An empirical comparison of different

approaches to the user cost of natural capital has never been undertaken until this thesis;

and the results implies that the most influential adjustment to traditional productivity

measures is the inclusion itself of natural capital. Based on the comparison of the methods,

the study shows that user cost values derived from the unit resource rent method are

rarely negative, are less volatile and provide a more realistic representation of production

functions over time. The study confirms that accounting for changes in subsoil assets

appears to have been a significant driver of productivity change during the Australian

mining boom from 2010 to 2015.

Due to the focus of environmental accounting frameworks on spatial areas, a unique

opportunity exists to utilise emerging geospatial datasets. Chapter 3 examines the

importance of factors that contribute to land value growth at the national level and

for the six main agricultural states of Australia. First, the chapter examines the roles

of location-type factors and environmental-type factors on land values; this is achieved

through the comparison of different spatial hedonic models. This study demonstrates that

land quality is positively correlated with land price, which is essential for decision-makers

considering a pricing instrument. Second, comparison of two distinct index-construction

methods shows that estimates of agricultural land adjusted for quality are reasonably

insensitive to both the hedonic models and whether time-dummy or double-imputation

indexes are employed. The contribution of this chapter is to provide the first portrait of the

relationship between Australia’s agricultural land values and land quality over the past 40

years at both national and state levels. In doing so, the chapter utilises a unique Australian

administrative spatial dataset developed by the Australian Bureau of Agricultural and

Resource Economics and Sciences (ABARES). This study also provides the first empirical

comparison of time-dummy and double imputation hedonic price indexes in this context,

and highlights that agricultural land prices may not reflect land management practices
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that by reducing soil quality, reduces the production yield. In this context, linking

capital accounting theory and environmental accounting provide a platform to improve

the estimates of agricultural productivity.

The emerging challenges of climate change and environmental degradation facing the

agriculture sector highlight the importance of better understanding the determinants of

farm productivity, including the contribution of land quality dimension. In this context,

Chapter 4 applies constant-quality land price indexes to enhance measures of agriculture

productivity and outlines the relationship between productivity and land quality. These

constant-quality price indexes aims to reflect the evolution of the prices of agricultural land

with the level of quality being fixed. In doing so, this chapter provides an example of how

measures of natural capital can be enhanced through the use of extensive administrative

data. The novelty of Chapter 4 is in the use of constant-quality price indexes in the

derivation of agricultural MFP. The results show that the agriculture sector MFP is

overstated when land quality is ignored, so that quality change appears as a change in

quantity.

The thesis concludes with Chapter 5 summarises the main goals and research questions

asked and highlights the contributions of the thesis. This concluding chapter highlights

some future research directions as well as the limitations of this work.
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Chapter 2

Accounting for Natural Capital in

Mining Multifactor Productivity: A

Comparison of User Costs for

Non-renewable Resources

2.1 Introduction and Related Literature
The growth in national productivity interests economists and policymakers alike because

increases in productivity levels imply that an economy can produce more output with

limited inputs - hence, improve the material state of the economy. The typical production

function assumed when constructing multifactor productivity (MFP) measures includes

labour and produced capital as input factors. MFP is considered to represent elements

such as more efficient management and technological change not directly embodied in

capital stocks. The traditional approach to deriving MFP excludes the contribution of

natural capital, despite it being a major input for some industries (for example, mining)

and its extraction may constitute a non-trivial share of GDP in some countries. For

example, subsoil assets1 have played a vital role in the Australian economy, most notably

1According to the 2008 System of National Accounts (2008 SNA), ‘subsoil assets are. . . those proven
subsoil resources of coal, oil and natural gas, metallic minerals or non-metallic minerals that are
economically exploitable given current technology and relative prices.’ (UN et al. 2009, para. 12.17). In
the Australian case, the scope is broader than proven resources, since it includes proven and probable
resources (Australian Bureau of Statistics [ABS] 2016b).
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over the last century. They are crucial inputs in the mining sector and are the fourth

most significant non-financial asset on the Australian balance sheet2, being around 10

per cent of total non-financial assets in 2015–2016. The value of subsoil assets stock has

tripled compared to a decade ago, primarily due to significant increase in world prices of

key minerals in the 2000s.

The implications of excluding natural capital in MFP measures particularly for the mining

sector — can be considerable because of its significance to the economy. In 2015–2016,

mining represented about 11 per cent of Australian gross domestic product (GDP) in

nominal value-added terms (approximately A$160 billion). From 1989–1990 to 2015–2016,

the output of the mining sector in current price terms surged by 8.4 per cent a year, while

in real output terms its growth was more modest (3.0 per cent annually).

Based on ABS estimates, Australia’s mining MFP fell 31 per cent between 1989 and 2007.

The weakness in productivity growth in the mining sector over the past 2 decades is not

unique to Australia. Canada’s annual average growth in mining MFP between 1989 and

2000 was 1.9 per cent a year, while the United States (US) recorded 0.6 per cent annual

growth over the same period. From 2000 to 2007, the corresponding numbers for Canada

and the US were -1.1 per cent and -1.7 per cent a year, respectively (Bradley & Sharpe

2009).

The omission of natural capital has been shown in several studies to significantly influence

the pattern of productivity growth in Australian mining. Topp et al. (2008) assessed

mining MFP to grow by only 0.01 per cent a year on average over a 30-year time horizon

(1974–1975 to 2006–2007). They attributed the stagnated MFP to resource depletion and

to output growth lagging behind capital investments. Topp et al. (2008) also found that

production lags were the main cause of mining productivity declines between 2004–2005

and 2006–2007; whereas prior to 2004–2005, the more significant factor is a decline in

yield. They concluded that that mining MFP was lower when adjusted for production

lags and falls in yield.

Loughton (2011) applied extraction of natural resources as a quality indicator. The author

concluded that accounting for quality of natural resources added approximately 2 per cent

2A country’s balance sheet shows the values of assets owned and of the liabilities owed by the country
at a particular point in time (ABS 2016b).
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growth to mining MFP between 1985–1986 and 2009–2010. The size of the adjustment

sharply increased between 2005–2006 and 2011–2012, owing to a general increase in

commodity prices. Overall, Loughton (2011) found that the contribution of natural capital

to productivity growth was moderate compared to other production factors.

Later, the Bureau of Resources and Energy Economics (2013) assessed the Australian

mining sector’s productivity growth at the regional level. Their report found that the

MFP growth rate increased on average from -0.7 per cent to 2.5 per cent annually between

1985–1986 and 2009–2010, after accounting for the effect of depletion in production lags

as well as deposit quality.

In another study, Syed et al. (2015) adjusted mining MFP growth to factor in lags in

input–output and the effects of depletion using an indicator of energy productivity. They

found the unadjusted average annual MFP rate of growth of -0.65 per cent rose to 2.5

per cent from 1985–1986 to 2009–2010. For the coal mining and oil and gas extraction

subsector, MFP growth also rose after depletion and production lags were considered.

Similarly, at the state level, the adjusted mining MFP also exhibited stronger growth.

Syed et al. (2015) concluded that resource depletion and input–output lags could explain

much of the fall in mining productivity, as measured by the ABS.

Overall, these studies highlight the importance of using adjusted measures of MFP to

consider the depletion of natural capital. Comprehensive productivity analysis, which

includes all three input factors (labour, produced capital and natural capital), provides

more accurate estimates and, thus, new insights into economic growth. The magnitude

and direction of the adjustment of MFP depend on the growth of the natural capital

input relative to other input factors. Failure to account for natural capital may send

misleading signals about a country’s economic progress, and may lead to an overestimation

of economic growth in countries heavily reliant on natural resource depletion.

One of the reasons for excluding natural capital in productivity analysis is that there

remain some unresolved issues with the measurement of natural inputs in environmental

accounting frameworks (UN et al. 2014a). The progress by national statistical agencies in

measuring quantities of natural stocks and the value of natural capital is still in its infancy,

and is generally disconnected from valuation approaches for other assets (Schreyer & Obst

2015). Even statistical offices such as the ABS do not record the full set of environmental
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assets within the 2008 SNA economic asset boundary in the national balance sheets. The

environmental assets on the Australian national balance sheets are land, subsoil assets and

native standing timber. Water and fish stocks are excluded due to difficulties in valuing

them, as well as a lack of available data. Further, some statistical agencies, like the ABS,

have not yet explicitly included natural resources in official measures of productivity due

to unresolved issues (mainly around ownership principles and recognition of an asset) in

these accounting frameworks.3

The aim of this chapter is to address one of these anomalies. Notably, this chapter

considers the issues in valuating natural capital for the purpose of explicitly including

natural resources in productivity analysis. There are different methods for valuation,

and each involves the choice of many parameters, such as returns on natural capital and

estimation of asset life. The extent of choices that feed into the valuation model highlights

the lingering fundamental measurement issues, even with the valuation of basic natural

capital.

Productivity measures that include the service flow of non-renewable natural capital

require user cost values (depletion rents) of natural capital in order to be consistent with

the current standard methodology for constructing capital service aggregates (OECD

2001). When the natural capital ‘delivers’ services to its owner(s), usually no market

transaction has occurred. The valuation of these implicit transactions — where the

services (quantities) are drawn from the natural capital stock and where prices are the

user costs (or shadow prices) of natural capital - is one of the measurement challenges in

productivity analysis.

Broadly, there are two approaches for deriving service flows of natural capital. The first

is the resource rents approach, which is the most common approach for valuing natural

capital service flow. While there are several methods within this approach, this chapter

3There are estimates of mining productivity that incorporate subsoil mineral assets in ABS (2018,
Table 24) data, but these are still labelled as experimental and are not included in the official set of
productivity estimates. The ABS (2014, para. 15) noted that ‘to treat the services obtained by miners
from mineral and energy resources consistent with the treatment for capital services requires the creation
of a non-produced asset owned by miners that is separate from the resources themselves’. The System
of Environmental-Economic Accounting (SEEA) 2012 (UN et al. 2014a; UN et al. 2014b) illustrates
some examples of recording depletion against the extractor, while in the national accounts it is recorded
against the government sector. Thus, the ABS experimental mining productivity estimates are based on
a production function that includes natural capital, but without satisfying the ownership principle.
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considers two specific methods: the unit resource rent method suggested by Brandt et

al. (2017) and adopted by the World Bank (Lange et al. 2018)4; and the residual value

method, which was recommended by SEEA 2012 (UN et al. 2014;UN et al. 2014). The

second approach for the valuation of natural capital services is the traditional user cost

approach. Diewert and Fox (2016a) provide a method for calculating user cost values

within this approach.

The three aforementioned methods are derived using data taken from the Australian

national accounts to construct aggregate capital services and MFP growth estimates for

the mining sector, accounting for the 27 subsoil minerals recorded on the national balance

sheets. It is the first study to compare the application of the three methods for valuing

natural capital services in the context of productivity analysis, thus, providing insight

into the plausibility of each method and the issues involved in their implementation.

Comparison of the results may assist other countries facing different natural capital data

availability (for example, when data on the cost of extraction is not available) to make

informed decisions on the most appropriate method best suited to the available data.

This chapter is organised as follows: Section 2.2 describes the theoretical model providing

the framework to account for natural capital in a productivity analysis. Section 2.3

presents the three different methods for natural capital valuation. Section 2.4 discusses

how output and aggregate input growth rates were constructed (data sources and

calculations) under each of these three methods. Section 2.5 examines and compares the

aggregate capital services and MFP growth estimates for the Australian mining sector,

derived by employing the three different methods for natural capital valuation. Section

2.6 concludes the chapter.

4Brandt et al. (2017) applied their method to various subsoil assets using the World Bank (2011)
estimates of unit rents for these assets.
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2.2 Accounting for Natural Capital in Productivity

Measurement

We followed the framework in Brandt et al. (2017) to construct a model of production

that is inclusive of natural capital. The production function that accounts for natural

capital is given in Eq. 2.1.

Yt = AtF (Kt, Nt, Lt) (2.1)

where Yt = (Y1,t, .., Yz,t, .., YZ,t) is a quantity vector of outputs produced in period t,

At represents technological change which changes over time,5 and F is the production

function. Kt = (K1,t, .., Kj,t, .., KJ,t) and Nt = (N1,t, .., Nm,t, .., NM,t) are quantity vectors

of produced and natural capital inputs used in production in period t and represent the

flow of produced and natural capital services, respectively. The quantity vector Lt =

(L1,t, .., Lh,t, .., LH,t) represents labour inputs used in production in period t. Within this

framework, natural capital represents a separate input in the production process. The set

of inputs is simply extended to include Nt and in doing so, the contribution of natural

capital in production is isolated and treated as a distinct factor of production similar to

labour and produced capital.

Productivity growth is commonly measured as growth in outputs relative to the growth

of factor inputs. Generally, growth in outputs can be attained either by supplying

more inputs or by efficiency increases of how inputs are transformed into outputs. In a

measurement framework that includes only a subset of inputs, ‘multifactor productivity’

is often used.6 In the context of the above model, At is period t MFP and the growth

rate of At represents MFP growth. Thus, the measure of MFP growth in period t, within

the above framework, is given in Eq. 2.2.7

5At is also known as the Hicks-neutral (or disembodied) technological change.
6Although commonly used synonymously, the term ‘total factor productivity’ should refer to the case

in which all inputs used in the production process are considered. Hence, here, following ABS practices,
we use the term ‘multifactor productivity’ (MFP).

7This measure extends the ABS index number measure which is based on Solow’s (1957) growth
accounting framework.
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MFPt,t−1 =
Yt,t−1

It,t−1

(2.2)

where Yt,t−1 is (1 plus) the growth rate of outputs and It,t−1 denotes the growth rate

of aggregate inputs, consisting of produced capital, natural capital and labour. That is,

It,t−1 is a weighted combination of the growth rate of aggregate productive capital services

(Kt,t−1), the growth rate of aggregate natural capital services (Nt,t−1), and the growth

rate of aggregate labour (Lt,t−1).

Another justification for including natural capital as a separate variable in the production

function and in the measurement of MFP growth stems from the fact that natural capital

inputs are treated differently from produced capital input.

While it is relatively easy to measure the flow of natural capital services as the

volume of natural capital extraction, the services of produced capital, such as

machines and buildings, are more difficult to observe and their service flow is

assumed to be proportional to the produced capital stock. This implies that the

rate of change of capital services equals the rate of change of the capital stock

(Brandt et al. 2017, p. 4).

The growth rate of produced capital services for all assets (Kt,t−1) is calculated as the

growth rate of the stock of different produced asset types weighted by their user cost

shares. Conversely, the rate of natural capital services growth for all assets (Nt,t−1)

is calculated as a flow measure, based on extraction of each natural asset annually.8

Therefore, it is neither practicable nor desirable to mix natural capital in the aggregation

of produced capital services.

To construct the aggregate inputs growth measure (It,t−1), the growth rate of different

inputs has to be weighted appropriately. According to production theory, the weights are

factor income (or cost) shares. The factor income (or cost) shares are derived using the

total input costs. In particular, the total input costs at time t (Xt) are given by Eq. 2.3,

Xt = uKt ·Kt + uNt ·Nt + wt · Lt (2.3)

8See section 2.4 for a detailed discussion on the construction of Kt,t−1 and Nt,t−1.
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where uKt = (uK1,t, .., u
K
j,t, .., u

K
J,t) denotes the user costs of produced capital,

uNt = (uN1,t, .., u
N
m,t, .., u

N
M,t) denotes the user costs of natural capital, and wt =

(w1,t, .., wh,t, .., wH,t) denotes the wage rates of different types of workers. Note that the

prices of capital inputs (produced and natural) are represented by user costs,9 and the cost

of inputs is obtained by multiplying the price vectors (uKt , uNt , wt) with the corresponding

quantity vectors (Kt, Nt, Lt). Thus, the corresponding factor income (or cost) shares are

defined in Eq. 2.4.

SK
t ≡ uKt · Kt

Xt

SN
t ≡ uNt · Nt

Xt

SL
t ≡ wt ·

Lt

Xt

(2.4)

Section 2.3 presents the three different methods considered for deriving user costs values

of natural capital.

It should be noted that within the extended framework with natural capital, it is

not necessary to hold the typical assumption regarding returns to scale or degree of

competitive markets to derive MFP growth. These assumptions are necessary when costs

are considered equal to nominal gross value added (GVA), and the weights of factor inputs

are their income shares in GVA, that is, the income share attached to each input factor are

the output elasticities for each factor (OECD 2001). In this framework, total input costs,

Xt, are considered to be more significant than in the traditional framework to account

for the costs of services from natural capital. In the extended framework, the input costs

Xt do not necessarily equal nominal GVA, as there are unmeasured inputs, such as the

natural capital stock.

For every period, income (or cost) shares are derived and incorporated with the (one

plus) growth rates of factor inputs to obtain an index growth for the aggregate inputs.

Specifically, It,t−1 is computed in the form of a Törnqvist index using Eq. 2.5,

9User costs capture the marginal productivity of each type of capital service. Given that under cost
minimisation the marginal productivity of each input factor equals its real input price, user costs can be
used as prices of capital inputs.
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It,t−1 = (Kt,t−1)S̄
K
t (Nt,t−1)S̄

N
t (Lt,t−1)S̄

L
t (2.5)

where S̄K
t , S̄N

t and S̄L
t are the corresponding average of the factor income (or cost) shares

in period t and t − 1 of produced capital, natural capital and labour, respectively; and

Kt,t−1, Nt,t−1 and Lt,t−1 are (one plus) the growth rates of aggregate productive capital

services, aggregate natural capital services and aggregate labour, respectively.10

By taking the natural log of Eq. 2.2, and with rearrangement, the contribution of MFP

to output growth components that are additive can be shown to be measured by Eq. 2.6.

ln(Yt,t−1) = ln(MFPt,t−1) + ln(It,t−1)

= ln(MFPt,t−1) + S̄K
t ln(Kt,t−1) + S̄N

t ln(Nt,t−1) + S̄L
t ln(Lt,t−1)

(2.6)

The growth accounting framework shown in Eq. 2.6 is used to derive the contribution

of input factors to output growth, and to indirectly estimate the rate of MFP growth.

The growth rate of output is equivalent to the growth rate of MFP plus a weighted

average of capital growth, natural capital and labour growth. The additive nature of

this framework enables the contribution of all inputs and MFP to be quantified in terms

of their contribution to an industry’s output growth. Further, this approach supports

analysis of the compositional change of the inputs over time due to changes between

natural and produced capital and labour inputs.

2.3 Alternative Methods for the Valuation of Natural

Capital Inputs

A variety of approaches can be used to value annual service flows of natural capital.

One challenge of measuring service flows of natural capital is the availability of data in

different countries. For example, data on the cost of extraction of subsoil assets is not

10Brandt et al. (2017) have shown that the difference between the growth of the traditional input index
(comprising of labour and capital only) and the growth in natural capital inputs determines whether
traditional MFP growth is adjusted upwards or downwards.
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readily available. The comparison of different methods provide insight into the plausibility

of each method and the issues involved in their implementation which will help countries

make more informed decision on which is the best method given data constraints. This

chapter considers three methods for calculating natural capital services. These are, the

unit resource rent method (World Bank 2011/ Brandt et al. 2017) and the residual value

method (UN et al. 2014a). In addition, Diewert and Fox (2016a) provide a method for

calculating user cost values within this approach, which is the third method considered.

Subsections 2.3.1 to 2.3.3 present the three methods for calculating the user cost of natural

capital.

2.3.1 Unit resource rent method

We begin by introducing some notation and definitions. As presented in Section 2.2, we

denote the number of asset types of natural capital used in the production model (Eq.

2.1) by M (indexed m = 1...M). We further let Vm,t−1 and Vm,t denote the market value

of asset type m at the beginning and end of period t. Also, let PN
m,t denote the ex-ante

expected price of one unit of asset type m at the beginning of period t and NCSm,t the

corresponding stock of asset type m to produce Eq. 2.7. Thus, it is assumed that market

values can be decomposed into price and quantity components in every period.

Vm,t = PN
m,tNCSm,t (2.7)

Let Rm,t denote the net revenue (resource rent) of natural asset type m during period t. If

we assume that expectations about the value of revenues during period t and expectations

about the price of the natural asset at the end of period t are realised, then the relationship

between Vm,t−1, Vm,tandRm,tinEq.2.8shouldhold.
11

Vm,t−1 = (1 + r)−1Rm,t + (1 + r)−1Vm,t (2.8)

11See Diewert and Fox (2016b) for a discussion on the problems associated with accounting for sunk
cost assets.
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In Eq. 2.8, r is the opportunity cost of capital (rate of return) at the beginning of period

t. It should be noted that Eq. 2.8 represents the net present value (NPV) approach.

As discussed in Section 2.2, the flow of natural capital services of asset type m in period

t (Nm,t) is equivalent to the net revenue (resource rent), Rm,t. Following Brandt et al.

(2017), Rm,t, generated by mining or extracting Dm,t units of asset type m during period

t is defined in Eq. 2.9,

Rm,t ≡ (pm,t · αm − cm,t · βm)Dm,t

= uNm,tDm,t

(2.9)

where αm is a positive vector of asset type m final products quantities generated by

extracting one unit of asset type m, pm,t is the corresponding period t market output

price vector, βm is a positive vector of input requirements for extracting (mining) one

unit of asset type m and cm,t is the corresponding period t market input price vector.

Thus, uNm,t ≡ pm,t · αm − cm,t · βm > 0 is the ‘unit resource rent’, that is, the user cost of

extracting one unit of asset typem during period t. In this method, the unit resource rent,

which is the market price net of extraction costs, is taken as the user cost of capital based

on the assumption of inter-temporally optimal depletion of natural capital. Applying

these to the definition at the end of period t user cost value of asset type m, UCV N
m,t,

(given in Diewert and Fox 2016a), yields Eq. 2.10.

UCV N
m,t ≡ Vm,t−1(1 + r) − Vm,t = Rm,t = uNm,tDm,t (2.10)

Note that the net revenue (resource rent) from the physical extraction of a natural capital

asset equals the user cost value of the natural capital asset for each period. As a result,

the unit resource rent mirrors the value of a natural resource based on the quality of

deposits and scarcity.

In this method, the resource rent (user cost value) is derived by estimating unit resource

rent for each type of asset and multiplying it by the corresponding extracted amount.

Brandt et al. (2017) estimated the resource rent of natural capital using average extraction
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costs across countries.12 Similar studies have used the Brandt et al. (2017) method due

to lack of available data.

The unit resource rent of an asset, in concept, removes the value-added (or gross operating

surplus), accrued to the asset from its marketed output. In other words, it could be

considered the surplus value accrued to the extractor of the natural capital derived after

considering all costs and normal returns.

2.3.2 Residual value method

The unit resource rent method provides one way of estimating the resource rent (user cost

value) of natural capital. SEEA (UN et al. 2014a) provides three alternative methods for

estimating resource rent.13

The resource rent and the net return to environmental assets can be derived

within the national accounts framework through a focus on the operating surplus of

extracting enterprises. In this context, the operating surplus earned by an enterprise

is considered to comprise a return for the investment in produced assets and return

on the environmental assets used in production (UN et al. 2014a, para. 5.117).

The residual value method provides a way to isolate the resource rent from the gross

annual return of the natural capital extractor. Under this method, the residual return

(resource rent) arising from the natural capital asset can be separated from gross operating

surplus (GOS) after accounting for subsidies and taxes, and deducting costs of production

and return on produced assets. Broadly, resource rent is equivalent to GOS minus user

costs of produced assets (consumption of fixed capital plus return to produced assets), as

shown in Eq. 2.11. An assumption for the return to produced assets, defined as rK , is

required in this calculation, which ideally should be industry specific. Here an endogenous

12The unit user cost of natural capital equals the marginal resource rent (that is, the market price net
of marginal extraction cost). Hence, the marginal extraction costs would be the relevant estimates in the
estimation of unit rents. However, these are not readily available, and average extraction costs are used
as an approximation for marginal extraction costs.

13The three main methods of estimating resource rent described in the SEEA (UN et al. 2014a, paras
5.121-5.131) comprise the residual value method, the appropriate method and the access pricing method.
As the country’s institutional arrangements profoundly influence both the appropriate and access price
methods, the residual value method is the recommended way for estimating resource rent.
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rK is derived which represents the internal rate of return for the mining industry. The

endogenous rate is derived by equating all GOS to capital services and solving for rK .14

UCV N
m,t ≡ GOSt −

∑
j

uKj,tKj,t (2.11)

This method has been discussed in Coremberg (2004) and OECD (2009), and subsequently

applied by Adams and Wang (2016) to the Canadian productivity estimates of the mining

and oil and gas sectors. In this case, as resource rent is derived residually using the GOS

(as obtained in the national accounts), the income share of labour does not change. This

method partitions an amount of GOS which in traditional measures of MFP is allocated

entirely to the user costs of produced capital to natural capital. By comparison to the

unit resource rent method, which derives estimates of resource rent at the asset-type level,

in this method estimates of resource rent for a given industry/sector are derived already

at the aggregate level.15 One difficulty that is worth noting in estimating resource rents

using this method is that the measure of GOS for the mining sector, as captured by the

Australian national accounts, will include some downstream processing, refinement and

other value-added activity undertaken by this sector.

Further, use of the residual method may result in insignificant or negative resource

rents. Obst et al. (2015) state that ‘resource rent type approaches are inappropriate

in cases where market structures do not permit the observed market price to incorporate

a reasonable exchange value for the relevant ecosystem service’ (p.17). The traditional

user cost method provides an alternative if the residual value method produces implausible

estimates for natural capital and the services they provide.

2.3.3 Traditional user cost method

Both the unit resource rent method and the residual value method require Eq. 2.8 to

hold (the NPV approach). That is, their derived user cost values (Eq. 2.10) are valid

if expectations about Rm,t and Vm,t formed at the beginning of period t are realised at

14The derivation of an endogenous rate of return is shown in Appendix A1.
15See Section 2.4 for a detailed discussion on the implementation of the two methods to derive Nt,t−1

and S̄N
t for a given industry/sector.

23



the end of period t. However, there is an alternative way to derive user cost values of

natural capital. In particular, Diewert and Fox (2016a) show how traditional user cost

techniques can be used to derive them. Continuing the same notation as above, let the

period t expected inflation rate for the price of a unit of asset type m (denoted as iNm,t) be

defined as 1 + iNm,t ≡
PN
m,t

PN
m,t−1

and the period t depletion rate of asset type m. Substituting

these definitions in the user cost value definition in Eq. 2.10 yields the user cost value in

Eq. 2.12,

UCV N
m,t ≡ Vm,t−1(1 + r) − Vm,t

= PN
m,t−1NCSm,t−1(1 + r) − PN

m,tNCSm,t

= PN
m,t−1NCSm,t−1(1 + r) − PN

m,t−1(1 + iNm,t)(1 − δNm,t)NCSm,t−1

= PN
m,t−1[r − iNm,t + (1 + iNm,t)δ

N
m,t]NCSm,t−1

(2.12)

where PN
m,t−1[r − iNm,t + (1 + iNm,t)δ

N
m,t] has the form of the traditional user cost of capital,

only if δNm,t is the depletion rate rather than the usual ‘wear and tear’ depreciation rate.

Diewert and Fox (2016a) show that under the assumption that expectations formed at

the beginning of period t are realised at the end of period t, the derived user cost values

in Eq. 2.10 and Eq. 2.12 are equal.

As pointed out by Diewert and Fox (2016a), one advantage of the traditional user cost

method is that, as opposed to the previous two methods, it does not require Eq. 2.8 to

hold for the derived user cost value (the last equality in Eq. 2.12) to be valid. One would

expect that it is improbable that Eq. 2.8 will hold because anticipated price changes are,

in general, not equal to actual ex-post price changes. This is because it is not likely that

producers foresee all the random noise intrinsic in predicting ex-post asset prices changes.

As the traditional user cost method does not require Eq. 2.8 to hold, it would suggest

that the traditional user cost method is a more reasonable way of valuing non-renewable

natural capital for productivity.

Another advantage of the traditional user cost method to estimate natural capital services

is that it follows the same method typically used for estimates of produced capital services

and that its user cost value (the last equality in Eq. 2.12) can be decomposed into the sum

of waiting services (rPN
m,t−1NCSm,t−1), revaluation (−iNm,tP

N
m,t−1NCSm,t−1), and depletion
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(δNm,tP
N
m,tNCSm,t−1) terms.16

The user cost value derived within the traditional user cost method can be re-written in

terms of capital gains. Specifically, the last equality in Eq. 2.12 can be re-written as Eq.

2.13.

(rPN
m,t−1 + δNm,tP

N
m,t − iNm,tP

N
m,t−1)NCSm,t−1 (2.13)

Note that the re-valuation term iNm,tP
N
m,t−1 represents the capital gains of asset type m,

denoted by τNm,t. That is, τNm,t ≡ PN
m,t −PN

m,t−1 = iNm,tP
N
m,t−1. Thus, the last equality in Eq.

2.12 becomes (rPN
m,t−1 + δNm,tP

N
m,t − τNm,t)NCSm,t−1.

However, the traditional user cost method in this context exhibits the same challenges as

those faced when determining the user cost of produced capital (for example, how to form

the expected values for δNm,t and iNm,t in an unambiguous manner and the sensitivity of

the user cost estimates to the choices of these parameters).17 A study by Inklaar (2010)

found that different choices and assumptions in estimating the user cost of capital matter

only a little. The consequential choice is the rate of return.

2.4 Data Construction

This section describes how the volume measures of output and inputs (that is, produced

capital, natural capital, labour and their respective weights) are derived for each reported

model in Section 2.5. The ABS (2017a) national accounts, ABS (2018) productivity data

and ABS supply-use data are the main sources of data on output, labour and produced

capital. Also discussed in this section are the challenges of various measurement problems

associated with determining a rate of return for the user cost of capital.

16See Diewert and Fox (2016a) for the application of this decomposition in deriving income measures
in the green accounting context.

17This is especially important when user cost estimates become negative.
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2.4.1 Output

GVA is used as the output measure and is equal to the value of gross outputs at basic

prices detracted by total intermediate inputs at purchasers’ prices.18 The volume of real

GVA is derived from ABS supply-use tables based on a double-deflation procedure. This

procedure involves deflating separately the nominal value of output and the nominal value

of intermediate inputs to obtain the volume measures. An industry’s total output, under

the double-deflation approach, is deflated by the price of all its outputs (primary and

secondary), while each individual intermediate input is deflated by its own price index

(UN 2018).

Adopting the ABS approach, the volume index of real GVA, Yt, are indexes of the

Laspeyres form,19 as shown in Eq. 2.14.

Yt =

∑
pt−1qt∑
pt−1qt−1

=

∑
pt−1qt
Yt−1

(2.14)

where p is prices and q denotes quantities. From Eq. 2.14, Yt,t−1 can be calculated as∑
pt−1qt which is equivalent to the supply-use tables in prices of the previous year. Thus,

the double-deflation procedure enables the volume measure of value added to be derived

by subtracting a previous year’s price value of intermediate inputs from a previous year’s

price value of gross output. This is only feasible with Laspeyres quantity indexes.

2.4.2 Labour input

The labour input for the mining industry is calculated using Ht, the indexes of hours

worked at time t. This index is derived using total hours worked in the mining industry

based on data from the ABS Labour Force Survey, as given by Lt,t−1 = Ht

Ht−1
. The

survey derives hours worked as the product of employment and average hours worked.

Applying an index of hours worked provides a better measure of labour input than using

18Basic price is the amount a producer receives from the sale of a good or service (minus taxes plus
subsidies), whereas the purchaser’s price is the amount paid by a purchaser to obtain a good or service.

19The ABS (2016b) use a Laspeyres output volume index in MFP estimates to maintain consistency
with the output estimates published in its annual national accounts.
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employment, due to the fact that hours worked captures changes in the proportion of

part-time employees, standard weekly hours, leave taken and paid and unpaid overtime

worked. The ABS official MFP estimates apply a labour volume series based on hours

worked, adjusted for labour quality. This adjustment accounts for changes to quality of

the aggregate series for different skill levels. For simplicity and to facilitate comparison

with productivity statistics of other countries, the unadjusted labour volume series is

used.

2.4.3 Capital input

The user cost value of capital, as measured here, is composed of two parts - the user cost

value of produced capital and the user cost value of natural capital: u′tK
′
t = uKt ·Kt+u

N
t ·Nt.

Before discussing the volume measures of capital (produced and natural), the options for

the rates of return, r, need to be explained, as these will be used in calculating the volume

measures.

Rates of return

There are various methods for selecting r described in literature. Broadly, these can

be categorised into two groups. The first group consists methods which use exogenous

estimates, while the second group consists of methods which derived the rates of return

endogenously. The second approach generally constrain the value of inputs used during

the period (including capital services) to be equivalent to the value of outputs produced

during the same period.

Most commonly, government bond interest rates are selected as exogenous rates of return.

The use of an exogenous rate likely leads to the calculated capital rent being different to

capital income. Capital income is the sum of GOS and the component of return on the

owner’s capital in gross mixed income, and thus, it is different from capital rent. This

approach could be considered an ex-ante view to determining the rate of return because

it essentially is the expected return on an investment decision. The ex-ante approach

could result in negative rental prices (user costs) in periods where significant changes in

capital gains and losses occur. As rental prices (user costs) are used to form weights in
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the estimation of capital services indexes, negative weights will cause problems in creating

an aggregate index.

The second way to select rates of return is by deriving an endogenous rate of return.

This represents the internal rate of return for a given industry. The endogenous rate is

derived by equating all non-labour income to capital services (produced and natural) and

solving for the rate of return (Hall and Jorgenson, 1967; see Appendix A.1). It imposes

these implicit assumptions: the underlying production function exhibits constant returns

to scale; markets are competitive; and the expected return is the same as the realised

return (OECD 2001).

An endogenous approach is an ex-post rate of return because it applies the rate of

return after the results of investment decisions are known. A common issue with using

an endogenous rate of return is that when income from capital is insignificant, the

corresponding internal rate of return will also be insignificant.

Criticisms of the endogenous approach revolve around the fact that this approach assumes

all of GOS (after deducting labour income) is attributable to the capital in the scope of

the productivity analysis. The OECD (2009) notes that there are a number of reasons

to argue that GOS should be attributed to other unobserved capital assets (such as

intangibles). This distinction, while minor in appearance, questions the assumptions

on the representation of GOS20 routinely made in productivity analyses. For example,

capital assets that can be included are natural resources. Hence, if an endogenous rate

is computed based on only fixed assets currently measured in the national accounts, in

addition to, unmeasured assets that provide capital services, then ‘the resulting rate

may be liable to bias’ (OECD 2009, p. 68). Inklaar (2010) found that estimates of an

endogenous rate of return are difficult to reconcile with the cost of capital in financial

markets or with industry specific risks. Karabarbounis and Neiman (2019) provides a

different perspective on endogenous and exogenous returns on capital, associating the

residual after accounting for the labour and capital share of income as ‘factorless income’.

Both studies emphasise that an endogenous rate of return will only be a useful economic

concept if all the relevant capital assets are correctly accounted for.

20Namely, that GOS exactly represents the remuneration of the fixed assets recognised in the 2008
System of National Accounts (UN 2009) or the value of the services of these assets.
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Figure 2.1 plots four rates of return over the period 1995–1996 to 2015–2016. Evidently,

the average exogenous and endogenous rates of return can vary substantially over time.

The endogenous approach makes the assumption of perfect competition and that capital

and rental markets are operating in a way that the marginal cost of the assets is equal

to their marginal product and revenue. Schreyer (2005) discusses examples in which

‘mark-ups’21 could exist. It is assumed that mark-ups would be positive in the long

run, because a negative result over a period of time would imply sustained losses, which

is not economically plausible. Situations in which positive mark-ups could exist include

where output markets are not sufficiently competitive so that monopoly rents exist; where

mark-ups provide incentives for entrepreneurial activity under Schumpeterian growth

patterns; where long gestation periods of investment are common within industries; and

where time-varying capacity utilisation exists. These situations are prevalent in the mining

sector in which significant capital investment usually occurs before full-capacity utilisation

is possible. As a result, negative returns is some years to be quite common in the mining

industry.

Figure 2.1 – Rates of return

Note: ‘Endogenous rate’ refers to the endogenous rate of return that includes both produced and natural
capital, derived by the author from unpublished Australian Bureau of Statistics (ABS) national accounts
data.
Source: Reserve Bank of Australia for the business loan rate (RBA 2020a, Table F5) and the cash rate
(Table F1.1).

A consequence of using an endogenously determined rate of return can be that industry

21Mark-ups is the degree that an endogenous rate of return would be greater than an exogenous rate.

29



rates of return can appear economically implausible (or negative for some years). As

with the endogenous approach, there are some practical issues associated with using an

ex-ante or exogenous rate of return. Another approach, suggested by Oulton (2007),

is where an ex-post endogenous rate is initially derived, followed by the selection of an

ex-ante rate as the trend of the ex-post rate of return. This method avoids the issue of

choosing an exogenous rate of return while preserving the nature of the ex-ante calculation

(OECD 2009). One advantage of using a hybrid approach is that it enables an empirically

calculated industry-specific rate of return that includes (among other things) missing

capital assets (such as land, research and development [R&D], and other intellectual

property assets).

Most importantly, regardless of which rate of return is applied, economically meaningless

negative user costs could occur due to the expected nominal return including

depreciation/depletion that is less than the expected nominal asset-inflation rate in some

years. Economic theory suggests that rental prices (user costs) should be positive over the

long term.22 Thus, following the ABS method to resolve this issue, any negative user costs

are set to a tiny positive number (0.001). In this way, the weights of the capital stock for

that asset become positive, and subsequently, adjust the weights of the remaining assets.

The actual choices (that is, which rate of return is used) is provided in what follows

(different considerations depending on how and which natural capital valuation method

is used).

Produced capital input

Following the ABS (2016b), the produced capital inputs are compiled at the asset-type

level, denoted by j, where j = 1...16.23 The service flow of each type of produced

22The user cost of capital is used to weight the volumes of capital services provided together with the
stocks of capital within each industry. One can interpret this as the marginal cost of the capital services
being provided and, thus, making negative user costs economically implausible. Given that there are
no significant changes to the production function, the weight of each asset capital service would remain
relatively stable over the short to medium terms.

23The estimates of produced capital are based on the following 16 asset types: machinery and
equipment; computers and computer peripherals; electronic and electrical machinery and communications
equipment; industrial machinery and equipment; road vehicles and other transport equipment;
non-dwelling construction; ownership transfer costs of non-dwelling construction; intellectual property
products; computer software; research and development; mineral and petroleum exploration; artistic
originals (film and television, music and literature); orchards, plantations and vineyards; and livestock.
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asset (Kj,t) is assumed to be proportional to the produced capital stock, that is,

Kj,t = γtPKSj,t, where γt is the capacity utilisation rate and PKSj,t is the productive

capital stock. The capacity utilisation rate is presumed to be constant over time. This

implies that, for each type of asset, the growth rate of produced capital services equals

the growth rate of produced capital stock. Thus, the growth rate of produced capital

services for all assets (Kt,t−1) is calculated as the growth rate of the stock for different

produced asset types weighted by their user cost shares. Specifically, Kt,t−1 is computed

using a Törnqvist index, as in Eq. 2.15,

Kt,t−1 =
16∏
j=1

(
Kj,t

Kj,t−1

)s̄Kj,t

=
16∏
j=1

(
PKSj,t

PKSj,t−1

)s̄Kj,t

(2.15)

where s̄Kj,t = 1
2

(
uK
j,tKj,t∑16

j=1 u
K
j,tKj,t

+
uK
j,t−1Kj,t−1∑16

j=1 u
K
j,t−1Kj,t−1

)
are weights calculated as the two-period

average value share of each type of capital services. PKSj,t is estimated by applying a

perpetual inventory method (PIM) to volume estimates of gross fixed capital formation

(investment) at the asset type level, in conjunction with age-efficiency profiles. In sum, the

PIM is used to transform all capital assets of different vintages into equivalent efficiency

units and then add them up into an estimate of the productive capital stock.24

The user cost of produced capital, uKj,t, is derived using the end of period traditional user

cost approach, which in its most basic form is comprised of three components - a rate

of return reflecting financing costs (rKPK
j,t−1); depreciation of the asset (δKm,tP

K
j,t); and a

capital gain/loss component (τKj,t); see Section 3.3.25

For rK , a mix of endogenous (ex-post) and exogenous (ex-ante) rates of return is

applied in ABS official productivity estimates. The ABS (2016b) applies an endogenous

rate set a ‘floor’ of 4 per cent, plus the consumer price index (CPI). This method

prevents the nominal rate of return from falling below 0 when income is low in

some years. Consequently, this approach avoids the occurrence of negative user costs

while simultaneously preserving the industry-specific rates of return derived from the

endogenous rate of return. One advantage of this method is that the floor retains the

24For a full description of the method used to derive the capital stock measures see ABS (2016b, chapter
14).

25Similar to the ABS, the user cost of produced capital includes a corporate income tax component,
tax depreciation allowances, investment credits and indirect taxes.
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long-term ex-ante nature of investment decision-making, and enables the manifestation

of higher rates of return in the case of missing assets. The fact that this method is

not symmetric (that is, it imposes a floor to the rate of return, but does not impose a

corresponding ‘ceiling’) is a deficiency. In the case where a ‘pure’ endogenous rate of

return is used (with no floor), the income share of capital inputs is attributed to income

(or cost) of produced capital, and hence, there is no allowance for the income share to

attribute to unmeasured inputs.

In the unit resource rent and residual value methods, an exogenous rK is used to allocate a

share of non-labour income to natural capital services.26 In Section 2.4.3, two exogenous

rates of return were considered. The first was the Reserve Bank of Australia (RBA)

cash rate, and the second was the RBA business loan rate. In choosing the exogenous

rate of return, several factors were considered. First, using an exogenous rate of return

may lead to volatility in the user costs and, in some cases, even negative user costs.

Second, determining a variable rate from the options in the financial market data to reflect

industry-specific longer-run expectations is challenging, particularly because short-run

financial market fluctuations may not correspond to long-run expectations. The RBA

cash rate compared to the RBA business loan rate proved to be less volatile over the long

run. Thus, the rK selected is the RBA cash rate. This rate is conservative relative to

those expected in some subsoil minerals markets such as oil and gas extraction, and as a

consequence may overstate the resulting resource rent estimates.

One interpretation that fits this framework is that the difference between the calculated

capital services and capital income (defined in the national accounts as GOS) may be

attributed to returns to other assets such as natural capital or intangibles. These missing

assets would contribute to the GOS used to derive endogenous rates of return. Another

factor to consider is that GOS is an ex-post indicator of the return to capital. The extent

to which inconsistencies in average rates of return will exist depends on the difference

between expected and realised returns. For the traditional user cost method, the choice

of rK depends on rN , as discussed in Section 2.4.5.

26Noting that in the traditional MFP the endogenous rate is derived by equating all non-labour income
to produced capital services and solving for the rate of return.
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2.4.4 Natural capital input

Similar to produced capital inputs, natural capital inputs are compiled at the asset-type

level, denoted by m, where m = 1...27. Australia has a comprehensive set of data on

subsoil minerals compared to most countries. Australia’s dataset for natural capital

input construction consists of annual data on 27 minerals included on the Australian

national balance sheet, based on Geoscience Australia’s annual Australia’s Identified

Mineral Resources report. These include antimony, bauxite, black coal, brown coal,

cadmium, cobalt, copper, diamonds, gold, iron ore, lead, lithium, magnesite, mineral

sands (ilmenite, rutile, zircon and nickel), petroleum products (crude oil, condensate,

natural gas and LPG), platinum, rare earths, silver, tin, uranium and zinc.

The flow of natural capital inputs, Nt, is the vector of quantities of natural capital inputs,

Nt = (N1t, ..., Nit, ..., NMt). As discussed in Section 2.3, three methods for valuing natural

capital inputs were calculated. Natural capital enters the productivity estimates directly

as a flow measure. Under the unit resource rent method, the measure of the flow of natural

capital services is the extraction amount of natural capital. Monetary valuation presents a

common metric in which individual subsoil assets can be aggregated and compared. Thus,

to build an aggregate natural capital input growth measure, it is necessary to have a price

for natural capital inputs. Nt is then an aggregate of different types of subsoil assets, m,

with the associated user costs, um,t, that is, Nm,t = UCVm,t. The capital services growth

for natural capital is constructed as a Törnqvist index shown in Eq. 2.16,

Nt,t−1 =
27∏
j=1

(
Nm,t

Nm,t−1

)s̄Nm,t

(2.16)

where s̄Nm,t = 1
2

(
uN
m,tNm,t∑27

m=1 u
N
m,tNm,t

+
uN
m,t−1Nm,t−1∑27

m=1 u
N
m,t−1Nm,t−1

)
are weights calculated as the

two-period average value share of each type of subsoil asset. Nt is constructed in the same

manner under the residual method and the traditional user cost method. An additional

complexity of the traditional user cost method is deriving the volume of natural capital

stock, NCSt, which is discussed next.
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Valuation of natural capital stock

As there are limited transactions in subsoil mineral resources in situ, the valuation of

stock of these natural capital assets, Vt, is measured using the NPV approach, which is

the standard approach for pricing capital.27 As the ABS (2015) reported, the NPV is

determined as the expected economic benefits that are attributed to a natural asset. The

calculations should be at the individual resource type level, ideally for specific resource

type and quality, and then aggregated to derive a total value of subsoil mineral resources

(UN 2014a). Use of the NPV approach to value mineral subsoil resources requires an

estimate of the discounted sum of the value of resource rents generated over the lifetime

of the asset.

Thus, the value of natural capital Vt is derived using Eq. 2.17,

Vm,t =
E∑

e=1

Rm,t

(1 + r)e
(2.17)

where Rm,t is the resource rent of asset m in the year t. The real discount rate, which

includes a premium for mining risks (assumed to be a constant 7.5 per cent) is denoted

by r, and E is the natural resource asset life. Note that, in comparison, the discount

rate, which is assumed to be the risk-free rate, applied by the ABS to the value of the

produced capital stock is lower, at 4 per cent. The World Bank (Lange et al. 2018)

also used a 4 per cent discount rate.28 The asset life, denoted by E, is derived by the

economic demonstrated resource (EDR) of the natural resource divided by the rate of

extraction. In Australia, these resources include both measured and indicated resources.

Measured resources are those where the volume is computed from a detailed sampling so

that the geological character of the deposit is well established. Indicated resources are

those for which the geological nature is calculated from similar information to that used

for measured resources. Subsoil assets are counted as being economical when they have

a high geological assurance, and at current market price the extraction is expected to be

27Provided the right assumptions are made about cash flow, discount rates and the life of the asset,
the written-down replacement cost or the discounted value of future returns should yield the same result,
see Dixit and Pindyck (1994).

28For coherence with the official valuation estimate of subsoil minerals asset produced by the ABS in
the Australian balance sheet, the ABS valuation model was adopted.
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profitable.

The resource rent, Rm,t, in the year t is calculated as revenue less production cost

(including a ‘normal’ rate of return on fixed capital) multiplied by the quantity Dm,t

of the resource extracted. As prices of subsoil minerals are volatile, a five year moving

average of annual prices is used to smooth prices and reduce the volatility in estimates of

revenue. One interpretation of this method is that it represents what mining businesses

would consider longer-term prices when assessing the value of mineral deposits (ABS

2016b). Further, the smooth prices result in more plausible NPV.29

Change in the monetary value of subsoil assets between t and t − 1 can include new

discoveries or holding gains and losses. Thus, NCSt is derived using the same NPV

formula but replaces the unit resource rent used for year t with the unit rent used for a

base year. This results in a time series of constant price stock values for subsoil assets. The

volume of subsoil asset then only shows changes in the stock values caused by changes in

the future extraction path and change to the physical stocks. The price that was actually

paid to acquire the natural asset (acquisition price), PN , were calculated as Vt/NCSt.

2.4.5 Choice of traditional user cost models

Given the possible choices of parameters, four traditional user costs of capital models were

selected for comparison against the unit resource rent and the residual value methods.

Initially, 16 variations were tested for the sensitivity of choice of asset prices and the rates

of return on the aggregate of capital services and corresponding rates of MFP growth.

These variants are shown in Table A.1 in Appendix A.2, together with the results of

the sensitivity analysis. The following subsection will describe the four selected models

and the construction of the choices for iN , rN , rK and τN under these models, along

with explanations for why they were chosen for comparison. The parameters of the four

29Ideally, prices should be the price of the mineral as extracted from a mine site without further
processing. In practice, a range of prices reflecting various degrees of transformation through simple or
more complex manufacturing processes is used to compile the resource rent. While some manufacturing
processes are undertaken at a mine site, such as coal washing or iron ore crushing (to produce fines for
export), more elaborate processes such as metal smelting and refining are often undertaken offsite. For
example, commodities such as black coal are semi-processed by washing to extract non-coal material
before sale. Other mineral products are commonly valued in more elaborately transformed states. Prices
for metals such as copper, lead, zinc, nickel and gold are for the refined product and are usually based
on London Metal Exchange prices.
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traditional user cost models are summarised in Table 2.1.

Table 2.1 – Traditional user cost models

Natural capital Produced capital

Model rN iNm,t τNm,t rK

Exogenous RBA cash rate price deflater Yes RBA cash rate
Jorgenson endo. ratea price deflater Yes endo. rate
Diewert and Fox endo. rate geometric smoothingb Yes endo. rate
No capital gains endo. rate price deflater No endo. rate
Note: a Refers to the endogenous rate of return including both produced and natural
capital. b Based on Diewert and Fox’s (2016a, p. 20) method.
Source: Australian System of National Accounts (ABS 2017a), RBA (2020a, Table F5).

Model 1:‘Exogenous’

As discussed in Section 2.4.3 several issues need to be considered in the choice of the rate

of return (opportunity cost of capital, produced or natural) in the user cost formula. In

this model, an exogenous rate of return is used for both produced and natural capital

because the rate should reflect industry specific long-run risk, rather than asset specific

risk. The rK and rN selected is the RBA cash rate as this rate is less volatile compared

with those expected in some markets for subsoil minerals such as oil and gas extraction.

See Section 2.4.3 for a comparison of different rates of return.

Model 2:‘Jorgenson’

Christensen and Jorgenson (1969) developed the traditional user cost method for the

geometric model of depreciation, which plays an important role in Diewert and Fox’s

(2016a) user cost of natural capital method. There are two main approaches to the user

cost formula: an ex-post approach that utilises the actual beginning and end-of-period

constant-quality asset prices; and an ex-ante approach, which utilises the actual beginning

of period constant-quality asset price, as well as an anticipated price for the asset at the

end of the period. Christensen and Jorgenson (1969) advocated for ex-post inflation rates

and for the cost of capital in this model to be endogenously determined.

Model 2 is referred to as ‘Jorgenson’ as it used ex-post inflation rates in the user cost

formula, where iet is defined as PN
t+1

PN
t

− 1 and where PN
t and PN

t+1 are the actual beginning
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and end of period asset acquisition prices. The cost of capital is determined based on

solving Eq. A.6 for rt. From a national accounting view, this approach has the benefit of

preserving coherence with the 2008 SNA (UN et al. 2009). The user cost values derived

are the sum of GOS recorded in the income account. Moreover, this method can be

considered as a decomposition of GOS into more granular components.

Method 3: ‘Diewert and Fox’

Diewert (1980, 2005) and Hill and Hill (2003) advocate the ex-ante user costs for most

purposes, as they tend to be smoother than their ex-post counterparts. Further, they will

generally be more closely aligned to a rental or leasing price for the asset. The Diewert

and Fox method overcomes one major issue of using Jorgensonian user costs, which is in

their volatility and their propensity to become negative, particularly when asset-inflation

rates are high for assets such as subsoil assets.

In this approach, predicted asset inflation rates, ipt , are applied in the user cost formula, as

set out by Diewert and Fox (2018). They suggested a straightforward geometric moving

average method for forming predicted asset-inflation rates to reducing volatility and thus,

producing smoother user costs. To calculate the predicted asset-inflation rates, ipt is

defined as
(

PN
t−5

PN
t

) 1
5

− 1.

Method 4: ‘No capital gains’

Besides the challenges around choice of rate of return (as discussed in Section 2.4.3), the

choice of asset price is another component of the user cost that is subjective. Generally, the

ex-post, constant-quality asset-specific price changes are used in estimating holding gains,

noting that in some instances, this has led to negative rental prices because of volatile

fluctuations in subsoil mineral prices. There is the possible problem of market bubbles

in commodity prices during mining booms. Use of the CPI was the solution to market

bubbles suggested by the OECD (2009) with the idea that a general measure of inflation

helps keep real purchasing power neutral. This solution may be equally applicable to

mineral resources, given that significant increase in world prices of key minerals during
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the mining boom make the ex-post user cost model impractical.30 Nevertheless, the

assumption that mining businesses base their expectations of holding gains on the CPI is

mainly unsupported in the literature.

Model 4 differs from the other three models in that it is the only one that excludes

the capital gains term, τ , from the user cost of capital formula to remove the effect of

holding gains. This is particularly relevant for subsoil minerals that are subject to volatile

fluctuations in commodity prices. MacGibbon (2010) found that this approach provides

more plausible asset weights in the New Zealand context, which displayed markedly less

volatility and tracked better with rental prices (where observable).

2.5 Results

This section compares estimates of capital services growth and MFP growth that include

natural capital for the Australian mining sector under the different user cost values

methods. It further assesses their fit in producing appropriate weights for the aggregation

of natural capital services in particular, and for the aggregation of all inputs in general. To

determine which method is best for estimating natural capital user cost values, one should

first make a decision about the criteria against which each model should be examined.

Parameters that are used to assess (but not necessarily determine) the suitability of user

cost values include their plausibility, their volatility and their relationship with directly

observed rental prices (where available) (MacGibbon 2010).

2.5.1 Natural capital stock and natural capital services

The plots in the left column of Figure 2.2 present estimated unit rents and level of

discovery for selected subsoil minerals (crude oil, iron ore and black coal) for the period

spanning 1995–1996 and 2015–2016. The patterns of the resource rent and the subsoil

minerals stock are similar to each other: both stayed low and stagnant before 2005–2006

and then grew sharply after that.

30There would be some capital assets, such as computers, where expected price changes would likely
differ to the general inflation and asset-specific prices may be required.
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Over the whole period, the implicit price of the subsoil mineral resources increased by

over five times, especially during the period from 2005–2006 to 2012–2013. During this

period of steady price increases, discoveries also increased by around three times. The

resource rent is mostly positive; however, it does become negative in some periods for iron

ore and black coal.

Since the early 2000s, a structural shift has occurred in the Australian mining sector, as

prices for essential subsoil mineral resource exports rose significantly, in line with a rise in

demand in emerging economies. The higher resource prices provided significant rents for

companies with existing mines (Grafton 2012). In response, the value of subsoil mineral

resources rose until 2011, increasing threefold compared to 1995. The rise in the value of

subsoil minerals might not be intuitive since extraction depletes these stocks. However,

subsoil minerals are only included in the balance sheet when they are economically proven

and probable. The World Bank (Lange et al. 2018) also found that the value of natural

capital assets doubled in the decade between 1995 and 2014, with the majority of the

growth in non-renewable assets (308 per cent) due to changes in prices and in volumes.

The plots in the right column of Figure 2.2 present user cost values of selected subsoil

minerals estimated by the unit resource rent and the traditional user cost methods.

It shows that the estimated user cost values of the traditional user cost models are

volatile compared to those estimated by the unit resource rent method. Intuitively,

this phenomenon could be explained by the capability to quickly change the production

capacity of mines to meet demand during the commodity price boom. A study by Parham

(2013) postulates that during a commodity price boom firms incur higher short-term costs

to accommodate rising demand, as the opportunity cost (for example, failure to ship a

tonne of coal) at the peak of the commodity boom is substantial. This factor, along with

potential over investment in infrastructure and declining resource grades and quality, may

account for the pattern of the user costs values of produced capital.
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Figure 2.2 – Trends in Australian subsoil mineral resources, 1989-1999 to
2015-2016
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Note: The figures on the left hand side compare the price of the subsoil minerals with the level of new
discoveries. The figures on the right-hand side compare the user cost values of selected subsoil minerals
under the unit resource rent method and four traditional user cost models. The residual value method is
not included because its natural capital services are not estimated for each subsoil mineral.
Source: ABS Australian System of National Accounts (ABS 2017a).
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2.5.2 Factor cost shares

Factor income (or costs) shares refer to the share of output allocated to capital (natural

and produced) and labour. As described in Eq. 2.3, the factor cost shares are the sum of

the user costs of the input factors. The method for constructing the factor income cost

shares is the same for all six models. Figure 2.3 reports estimated cost shares using the

different user cost value methods.

Figure 2.3 – Cost shares

(a) Resource rent (b) Residual method

(c) Exogenous (d) Jorgenson

(e) Diewert and Fox (f) No capital gains

The estimated cost shares allocated to produced capital, natural capital and labour are

affected by which user cost values method is applied. Some substantial differences in the

pattern of the allocation between produced and natural capital are most noticeable when
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comparing the residual value method and the traditional user costs models with the unit

resource rent method. The natural capital share in the residual value method often sits at

0 due to GOS being exhausted in that period entirely by produced capital. This results in

often implausible capital services weights, as it implies zero contribution of natural capital

to productivity. The unit resource rent method generally allocates the largest weight to

natural capital, and its estimated cost shares are much less volatile.

The estimated cost shares vary across the different traditional user costs models. The

effect of different variables and parameter choices on both the user cost values estimates

(weights) for aggregating natural capital and the cost shares estimates (weights) for

aggregating all inputs across the three different methods (for parameters choice) is

pronounced. The price index for capital services of subsoil minerals is volatile, particularly

from the 2000s onwards. These subsoil mineral rental prices have significant implications

on the cost share of subsoil minerals, including negative values for some periods.31

2.5.3 Mining capital services and multifactor productivity

Drivers of MFP are typically factors that generate efficiency in use of inputs (for example,

capacity utilisation, economies of scale, changes in the quality of inputs, and technological

change). Productivity measures in the Australian mining sector are released annually

by the ABS. The most recent ABS (2018) data suggests that mining sector MFP has

declined significantly in the past decade. Such decreases in mining MFP contributed

materially to a productivity slowdown of the market sector, as it contributes around 8

per cent of its total GVA. The special features of the mining sector imply that traditional

measures of productivity warrant careful interpretation. As mining activity is heavily

reliant on the availability and quality of the natural capital stock, ignoring the role of

natural capital may bias estimates of productivity. For example, when ore grades decline

as deposits deplete, more inputs are needed to produce a unit of saleable output, causing

the measured productivity of mining to fall. This factor is captured by the resource rent

factor share shown in 2.3, where the share of natural capital declines over time. Figure

31Alston (2018) made a similar observation regarding the United States (US) Department of
Agriculture’s Economic Research Service price index for services from land. He noted the volatility of
the index was remarkable. The land rental price fluctuations have significant (and perhaps implausible)
implications for both the predicted and observed cost share of land.
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2.4 plots the latest ABS capital services index and the adjusted capital services indexes

that account for natural capital. An upward trend in the capital services indexes, that

include natural capital, is observed.

Figure 2.4 – Mining capital services

Source: Estimates of Industry Multifactor Productivity (ABS 2018) and author’s estimates

Figure 2.5 shows the various mining MFP estimates that include natural capital against

the ABS unadjusted mining MFP estimate. The inclusion of natural capital has a positive

effect on MFP, noting that it is not the case that MFP growth is an overestimation of

productivity growth during a mining resources boom. This is because during the mining

boom not only was there natural capital growth, but also growth in the other factor inputs.

Further a resources boom comes hand in hand with an investment boom, originating from

the mining industry, but this will spillover into other sectors of the economy.

Table 2.2 compares the estimates of MFP growth for the mining sector with and without

natural capital, using the growth-accounting framework. This framework determines how

the rate of observed change in an industry’s output can be explained by the rate of

change of all the inputs. This framework considers the residual as MFP growth, and the

contribution of adding natural capital as an input of production on MFP growth depends

on the relative rate of growth of produced to natural capital.

Importantly, adding natural capital has no effect on output (value-added) growth in
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Figure 2.5 – Mining multifactor productivity

Source: Estimates of Industry Multifactor Productivity (ABS 2018) and author’s estimates

this framework. However, the contribution of labour32 and produced capital inputs

to productivity has changed to include the contribution of natural capital. Growth

accounting with natural capital can be used to examine the changing contribution of

natural capital over time. MFP growth rises when natural capital growth is slower

than that for produced capital, and vice versa. As shown in Table 2.2, even though

subsoil minerals grow very fast during the resources boom, other inputs grow even faster,

and MFP that includes natural capital of the mining sector is adjusted upwards. From

2004–2005 onwards, the growth contribution of natural capital was relatively significant

in Australia. After that, it stagnated, as commodity prices started to fall.

Looking at the averages over the selected periods, including natural capital as a factor of

production raises the rate of MFP growth in all periods for all user costs of natural capital

methods. In general, the inclusion of natural resources results in moderate increases in

the measured growth rate of MFP for the mining sector. On average, during the period

1995–1996 to 2015–2016, the growth rate of natural capital was between -0.1 per cent and

0.8 per cent, while the growth rate of produced capital was between 2.7 per cent and 3.9

per cent.

32Except for the residual value method because the cost share of labour remained the same, while the
cost share of capital is proportioned across produced and natural capital.
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Table 2.2 – Mining MFP growth decomposition (average growth rates (%))

Resource rent

Output Produced Natural Labour MFP Adjust.
Period growth capital capital input growth effecta

1995/96 - 2000/01 4.35 1.07 1.62 -0.03 1.69 0.01
2001/02 - 2005-06 1.04 1.52 0.02 1.14 -1.54 2.86
2006/07 - 2010/11 4.89 3.70 0.31 1.78 -0.76 3.33
2011/12 - 2015/16 7.84 5.09 1.14 0.29 1.41 1.72
1995/96 - 2015/16 4.52 2.76 0.81 0.75 0.27 1.89

Residual method

Output Produced Natural Labour MFP Adjust.
Period growth capital capital input growth effect

1995/96 - 2000/01 4.35 2.37 0.15 -0.07 1.91 0.22
2001/02 - 2005-06 1.04 2.56 0.18 1.83 -3.60 0.80
2006/07 - 2010/11 4.89 3.84 1.28 1.68 -2.06 2.03
2011/12 - 2015/16 7.84 5.94 0.59 0.11 1.2 1.51
1995/96 - 2015/16 4.52 3.62 0.53 0.84 -0.52 1.10

Traditional user costs - Exogenous

Output Produced Natural Labour MFP Adjust.
Period growth capital capital input growth effect

1996/97 - 2000/01 4.35 1.68 0.87 -0.05 1.80 -0.11
2001/02 - 2005-06 1.04 2.66 0.35 1.95 -3.89 0.51
2006/07 - 2010/11 4.89 4.95 -0.06 2.31 -2.48 1.61
2011/12 - 2015/16 7.84 4.57 1.40 0.33 1.74 2.05
1996/97 - 2015/16 4.52 3.38 0.65 1.08 -0.59 1.03

Traditional user costs - Jorgenson

Output Produced Natural Labour MFP Adjust.
Period growth capital capital input growth effect

1995/96 - 2000/01 4.35 1.38 0.91 -0.08 2.12 0.44
2001/02 - 2005-06 1.04 2.57 0.36 1.92 -3.80 0.60
2006/07 - 2010/11 4.89 5.40 -0.02 1.61 -2.29 1.80
2011/12 - 2015/16 7.84 5.21 1.40 0.22 1.21 1.52
1995/96 - 2015/16 4.52 3.53 0.67 0.87 -0.56 1.06

Traditional user costs - Diewert and Fox

Output Produced Natural Labour MFP Adjust.
Period growth capital capital input growth effect

1995/96 - 2000/01 4.35 1.63 0.69 -0.08 2.13 0.45
2001/02 - 2005-06 1.04 2.37 0.50 1.79 -3.63 0.77
2006/07 - 2010/11 4.89 4.98 0.02 1.56 -1.52 2.57
2011/12 - 2015/16 7.84 7.07 -0.38 0.24 0.27 0.58
1995/96 - 2015/16 4.52 3.90 0.40 0.83 -0.55 1.06

Traditional user costs - No capital gains

Output Produced Natural Labour MFP Adjust.
Period growth capital capital input growth effect

1995/96 - 2000/01 4.35 1.46 0.67 -0.07 2.31 0.62
2001/02 - 2005-06 1.04 2.04 -0.03 1.51 -2.49 1.91
2006/07 - 2010/11 4.89 4.25 -0.72 1.33 0.08 4.17
2011/12 - 2015/16 7.84 5.76 -0.51 0.12 2.62 2.93
1995/96 - 2015/16 4.52 3.29 -0.11 0.68 0.71 2.23
Note: a ‘Adjust. effect’ indicates the growth difference (in percentage points) between
the mining sector MFP estimates adjusted for natural capital and the ABS MFP
estimates for the same sector.
Source: Estimates of Industry Multifactor Productivity (ABS 2018) and author’s
estimates
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The contribution of natural capital input is higher under the unit resource rent method

(1.9 percentage points) compared to the residual value method (1.1 percentage points)

and the traditional user cost method (1.0 to 2.2 percentage points). This result arises

because the income share of natural capital under the unit resource rent method (as shown

in Figure 2.3) is the largest compared to the other user costs methods.

This chapter indicates that failing to include subsoil minerals as a capital input in

productivity analysis may account for a substantial proportion of the mining productivity

slowdown over the past 10 years. Nevertheless, it does not explain all of the productivity

declines in the sector. Overall, the unadjusted MFP growth over the past 20 years is

substantially lower than the MFP growth adjusted for natural capital by at least 1.0

percentage point each year.

2.6 Conclusion

This chapter used Australian data from the mining sector to compare methods for

modelling natural capital as a capital input into the production process. It showed

that while different methods of user cost values yield different MFP estimates, the most

influential adjustment to traditional mining MFP is the inclusion itself of subsoil minerals

(natural capital). Including natural capital in productivity measurement generates

substantial measured productivity gains for the Australian mining sector. In general,

natural capital contributed positively to MFP growth. Overall, natural capital added

at least 1.0 percentage points growth on average to annual productivity growth between

1995–1996 and 2015–2016, noting that the effect of adding natural capital does change

over time.

The size and direction of the productivity growth adjustment principally depend on the

rate of natural capital growth relative to the rate of growth of produced capital and

labour. We find that failing to account for natural capital has led to an underestimation

of productivity during the mining boom when produced capital was growing faster than

natural capital. Nevertheless, recognising natural capital as a factor of production does

not explain the entire decline in MFP, as other factors may have also contributed to the

decline.
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The subsoil asset user costs derived from the unit resource rent method are rarely negative,

and the subsoil asset weights display markedly less volatility, providing a more realistic

representation of the production functions over time. Hence, this method is considered to

be a superior choice to determine user costs of natural capital. The residual value method

produces implausible weights for natural capital, which often sits at zero when GOS in

that period is entirely exhausted by produced capital.

An analysis of the various traditional user cost models indicated that the choice of

parameters profoundly influences the resulting estimates. Regardless of which model

is used, none completely resolve the issue of negative user cost values for some subsoil

minerals in some periods. Indeed there is little difference in the resulting estimates of

mining MFP growth using the Jorgenson and Diewert and Fox models, even though there

are substantial differences in the way user cost values are estimated. The results presented

here confirm that from the explored traditional user cost models the preferred option is

the Diewert and Fox model. The subsoil asset weights that are derived from this model

are less volatile, and occurrences of negative predicted user costs are minimal.

In conclusion, the measurement of natural capital does not receive sufficient attention

from national statistical agencies, most likely because accounting for the contribution of

natural capital to economic growth is associated with significant uncertainties, such as

lack of appropriate data, difficulties in setting the price and accounting for quality change.

Thus, there remains work to be done to resolve the debate over how best to measure

and account for the price and quantity of natural capital in productivity analysis. An

important step contributed by this chapter is a comparison of the empirical implications

of different user cost values and its impacts on mining productivity measurement. We

hope our methodologies could be applied to study natural capital in natural resource rich

economies to enhance our understanding of global changes in natural resources stock and

how it affects productivity.
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Chapter 3

Environmental Attributes and the

Value of Agricultural Land - A Hedonic

Analysis

3.1 Introduction

Agricultural land is a vital asset of any farm. In Australia, agricultural land accounts for

over 60 per cent of the capital stock in the agricultural industry. Commonly, many rural

properties are valued based on past sales in their local areas and on general expectations,

such as local market conditions, using appraisal approaches. One aspect of the agricultural

valuation market - unlike commercial and residential property investment that generally

has a relatively liquid market - is the relatively low number of sales from which to

determine value. Further, the land appraisal approach has the problem of subjectivity

and may be systematically biased (Berry & Bednarz 1975). The emerging challenges of

climate change and environmental degradation mean that a better understanding of the

determinants of agricultural land productivity and, hence, its value is more important

than ever.

Factors affecting agricultural land values are divided into two categories: income from

economic goods produced by the use of the land, and possibilities of an alternative use for

the property (Rutkauskas et al. 2018). In the income category, land value is estimated
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using a discounted cashflow method. The assessed value should also be influenced by

general economic conditions (for example, inflation and interest rates). In the alternative

use category, land value is determined by income from non-agricultural activities such as

residential or commercial buildings and multiple methods can be used to estimate land

price (Rutkauskas et al. 2018).

Information about agricultural land value is not readily. The Department of Agriculture,

Water and the Environment (ABARES) produces price indexes of broadacre farmlands.

However, these price indexes have limitations, for example, they fail to account for and

quantify the determinants of land values such as location and land use. The Australian

Bureau of Statistics (ABS) estimates the value of agricultural land stock as a component

of the non-produced asset in the national balance sheet but there is no adjustment made

for quality. The ABS measure ignores soil degradation due to land management choices

or exogenous factors such as climate and rainfall. Therefore, a source of bias in the

measurement of agricultural land values is the inability to property incorporate quality

changes. On way to minimise such bias is by quality-adjusted price indexes, which measure

the price change of ‘like with like’.

This thesis uses a unique administrative dataset, containing a census of farm-level

transactions sales records in Australia spanning more than 40 years. Further, geographic

information systems mapping has been used to integrate spatial data of individual farms

to an extensive range of characteristics. This rich dataset allows, for the first time,

the construction of quality-adjusted price indexes of Australian agricultural land at the

national and regional levels. To the best of our knowledge, this chapter is the first

empirical comparison of different spatial hedonic models performed on the Australian

agricultural land market. In this chapter the classic hedonic model is extended by adding

location-specific variables as well as a type-specific land-use variable. Hedonic regression

models can be helpful for shedding light on the following questions: How might agricultural

land be valued in the absence of a robust real estate market? How do non-physical land

characteristics such as proximity to a nearest town, affect price? How should agricultural

land be valued in non-revenue generating periods (such as during a prolonged drought)?

The hedonic pricing method calculates the implicit marginal price of the various

characteristics of land from its sale price. As every farm is unique, the use of hedonic

regression models for estimating its value is justified. Hedonic methods usually model the

50



conditional expectation of lagged agricultural land prices given a bundle of characteristics.

Here, the hedonic pricing model is extended to factor in the spatial dimension due to

spatial dependence and spatial autocorrelation between land values and spatial variables

such as rainfall and temperature.1

While there are minimal studies on the hedonic analysis of agricultural land, particularly

in Australia, the literature on valuing a residential property is large. For example, Hill

and Scholz (2017) and Hill (2011) used variations of hedonic price valuation that employ

longitude and latitude as a way of controlling for locational dependence. They found

that the use of geospatial splines is superior to postcode (regional) dummies to adjust for

omitted locational characteristics.

In this chapter, a spatial hedonic pricing model is constructed that includes a locational

dummy variable. The method used by Hill and Scholz (2017) which directly employs

spatial coordinate information in the model is applied. Both these models are estimated

over time and at both national and regional levels. Overall, over a dozen variables were

used to capture the environmental attributes of the agricultural land, including land

use, soil acidity, average minimum and maximum temperature, average rainfall, water

availability, population accessibility and distance to infrastructure.

In real estate markets where farms are rarely sold in consecutive periods, the ability to

price unmatched farms is essential. Two distinct approaches to constructing price indexes

that deals with this problem are considered: the time-dummy hedonic method and the

hedonic imputation method. Both methods remove the effects of quality changes on the

price and allow the indexes to incorporate unmatched farms between consecutive periods.

The two hedonic index methods appear similar, however, Diewert et al. (2007) have shown

that they can provide quite different results, even in the case where comparable functional

forms are used to compare results over time periods. The time-dummy method constrains

the regression parameters to be constant over time, while the hedonic imputation method

allows for quality adjustment parameters to vary in each period. Inherently, the hedonic

imputation method is more flexible, as it allows for shadow prices of characteristics to

1Anselin (1988) considered two spatial models—the spatial lag model and the spatial error model.
Recent spatial hedonic models of real estate prices are based on these econometric developments. More
sophisticated hedonic models that utilise spatial variables include the semi-parametric model, lattice
model and the geostatistical model. Each of these hedonic models applies spatial weights using alternative
criteria defined on the interaction between spatial units.
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evolve.

This chapter makes two contributions to the measurement of agricultural land values.

First, it quantifies the link between environmental attributes of agricultural land and

agricultural land values over time in Australia. Second, this chapter assesses the

suitability of different spatial hedonic pricing models in the construction of agricultural

land price indexes that account for quality change at the national and regional levels.

These constant-quality price indexes could potentially enhance national accounts and

productivity measurement.

This chapter is organised as follows: Section 3.2 provides an overview of previous

applications of hedonic pricing methods to value agricultural land, with the data then

described in Section 3.3. Sections 3.4 and 3.5 develop a theoretical model providing the

mechanism through which locational variables enter the hedonic model. Empirical results

are given in Section 3.6, and Section 3.7 concludes the chapter.

3.2 Application of Hedonic Methods to Value

Agricultural Land

Table 3.1 provides a collation of variables used in previous studies of hedonic models. To

the best of my knowledge, King and Sinden (1988) published the most seminal study to

date on the use of a hedonic approach to estimate Australian agricultural land values.

Their survey of the Manilla Shire in New South Wales (NSW) determined the extent to

which changes in land condition affect land prices, and whether land improvements are

justified. Their model included production characteristics (for example, size, slope, river

frontage and wheat yield), consumption characteristics (for example, house and the age

of residence), location, and both buyer and seller characteristics (for example, investment

skill, age and a ranking of sale pressure). They found that markets recognised land quality,

with higher-quality land selling for more—a reflection of anticipated crop yields. They

also identified that the market factored in the unpriced costs of improving lower-quality

land. Much like mineral deposits are natural capital inputs to the mining industry, soil

quality is a natural capital input to farming.

Dent and Ward (2015) assessed whether the cost of investing in irrigation infrastructure
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leads to increases in agricultural land values. Their model controlled for climate and a

number of geographic and soil variables, including distance to coast, distance to primary

roads, soil texture and soil nutrients. They concluded that the cost to irrigate per hectare

would outweigh the average increase of agricultural land value.

Sheng et al. (2018) examined the relationship between access to public infrastructure and

agricultural land prices using hedonic regression analysis. They performed the analysis

on the NSW farm-level data between 2009 and 2011 and showed that superior access to

road and rail transport has a positive effect on agricultural land values, particularly for

large and cropping farms. The authors concluded that there is a spillover effect generated

by the public infrastructure to farms, which may affect agricultural productivity.

Other non-Australian research includes the study by Mendelsohn et al. (1994), which

provided an analysis of the effect of climate on land values using a Ricardian approach.

They found that higher temperatures reduced average agricultural land values. The

control variables used in this study included income per capita, soil salinity, flood risk,

erosion, land slope, soil type (sand/clay) and soil moisture.2

Earlier, Palmquist and Danielson (1989) considered whether soil erosion (among other

factors) helped to determine farm prices for North Carolina. They concluded that draining

wet soils could improve agricultural land values by up to 34 per cent and that increased

soil erosion is likely to be detrimental to values. Huang et al. (2006) later found that

agricultural land values tended to decline with increased ‘ruralness’ (that is, distance from

urbanised areas), population density, per capita income and soil productivity.

Pyykkon̈en (2006) presented a comprehensive analysis of factors affecting land prices

between different regions in Finland. He included a range of farm and non-farm factors in

his hedonic pricing model, including parcel size, land features, land quality, cropping

yield, climate variables, population density, government support, unemployment and

infrastructure availability. This study supports the view that numerous factors affect

agricultural land prices besides pure agricultural income. Pyykkon̈en (2006) also stressed

the importance of accounting for spatial differences, emphasising it is a necessity to achieve

2Mendelsohn et al. (1994) used geophysical and economic data for close to 3,000 counties in the
US. Using monthly climate variables in both normal and quadratic forms, the effect of long-term global
warming on agricultural land values was the focus of their study.
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Table 3.1 – Examples of variables used to explain land values

Variable Reference

Agricultural returns - Market revenues (Barnard et al. 1997; Carlberg 2002)
- Monetary variables - Returns to land (Goodwin et al. 2010; Weerahewa et al. 2008)

- Net income (Devadoss & Manchu 2007)
- Producer price of wheat (Goodwin & Ortalo-Magne 1992)

Agricultural returns - Yield (Devadoss & Manchu 2007; King & Sinden 1988)
– Non-monetary variables - Soil quality, temperature and precipitation, irrigation and slope

(King & Sinden 1988; Mendelsohn et al. 1994)
- Fraction of cropland (Gardner 2002)
- Proximity of a port and access to infrastructure (Folland &
Hough 1991; Huanget al. 2006; Sheng et al. 2018)
- Irrigation (Dent & Ward 2015)

Government payments - Total government payments (Devadoss & Manchu 2007;
Henderson & Gloy 2008)
- One or multiple categories of government support
(Goodwin et al. 2003; Pyykkonen 2006)

Variables describing the - Pig density (Duvivier et al. 2005)
market - Manure, farm density and average farm size (Pyykkonen 2006)

- Size of the agricultural land market (Duvivier et al. 2005)
Macroeconomic factors - Property tax rate and interest rate (Devadoss & Manchu 2007;

Weerahewa et al. 2008)
- Inflation rate (Alston 1986)
- Multifactor productivity (MFP) growth (Gardner 2002)
- Debt-to-asset ratio, credit availability (Devadoss & Manchu 2007)
- Unemployment rate (Pyykkonen 2006)

Urban pressure indicators - Total population (Devadoss & Manchu 2007)
- Population growth, rurality (Gardner 2002)
- Ratio of population to farm hectares and urbanisation categories
(Goodwin et al. 2011)
- Dummy variables for city areas (Henderson & Gloy 2008)
- Proportion of the labour employed in agriculture
(Pyykkonen 2006)

Source: Feichtinger & Salhofer (2011) and author’s own compilation.

accurate estimates. In a separate study, Drescher et al. (2001) controlled for several

external factors such as economic and government influences, expectations about the

future and market participant characteristics, to assess land values.

3.3 Data Source and Variable Definition

This section discusses the key features of the data. The dataset utilised is unique and

was created using three main sources. The primary data source is the database from
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CoreLogic, containing individual sales of Australian agricultural land for over 40 years.

Also included is the address of the property, the total land area traded, the sale price

of the parcel, and the contract and settlement dates. A more detailed description of

CoreLogic variables is provided in Appendix B1.

The CoreLogic data was geocoded using a combination of the physical address and spatial

coordinates of the property. The geocoded data allowed for linking to spatial datasets

such as the Australian Standard Geographic Classification at the Statistical Areas Level

1 topography data from Geoscience Australia (2020a, 2020b), the Bureau of Meteorology

(2020a, 2020b) and the CSIRO National Landcare Program. As a result of this linking,

the dataset contains over 50 variables including environmental attributes of the property,

such as soil and climate.3

3.3.1 Data cleaning

The data recorded transactions of individual sales collated by CoreLogic, that may contain

errors such as:

1. human error in data entry;

2. insufficient or missing detail in free-text fields; and

3. duplicate records or multi-sale purchases.

Duplicate records occur when one property is recorded at the contract date, and then on

the exchange date. Another reason is when a land parcel is subdivided and sold to multiple

buyers at the same price. Thus, before analysis could start, several data cleaning processes

were undertaken. First, all incomplete sales records, duplicates and multi-sale purchases,

non-agricultural properties (for example, land-use purposes such as mining, abattoirs,

urban corridors, hobby farms and residential properties), and transactions that occurred

before 1975 and after 2018 were removed. The raw dataset contained 700,424 property

transactions (for 349,217 unique properties) between 1900 and 2018. After removing

duplicate records, 583,576 transactions remained. When we removed observations labelled

as ‘non-farm’, sold before 1974 and after 2018, and where the contract price and year

equalled 0, only 307,784 transactions remained.

3The full list of variables available is described in Chancellor et al. (2019).
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The data also included transactions in which the sale price per hectare was unrealistically

low. These sales were suspected to be between family members. The prevalence of hobby

farms was another challenge, as they are often situated on small land parcels located

close to urban areas and usually include large buildings or homesteads. These factors

can result in hobby farms having extremely high sale price per hectare. As the market

price in these transactions generally does not reflect the average value of agricultural

land. Hence, property with land size smaller than two hectares were removed to exclude

potential residential properties. Additionally, land sold for less than AU$50 per hectare

and where the price exceeded AU$40,000 per hectare were also excluded. Another issue is

‘multi sale’ transactions, where several land parcels are grouped for sale, but often, only

a single contract price is recorded. These ‘multi sale’ transactions distort the relationship

between contract price and land area. In this study, multi sale transactions are excluded.

When these records are removed the number of transactions that remained was 196,599.

The final component of data cleaning involved making statistical edits to extreme outliers

based on the assumption of a normally distributed dataset. The Tukey method was used

to identify sales prices per hectare that were above or below 1.5 times the inter-quartile

range (IQR) by year at the state level, that is, Q1 − 1.5(IQR), Q3 + 1.5(IQR) (Tukey

1947). A number of simple regression models were also run to identify additional outliers

using Cook’s distance method. After this cleaning process, 147,812 transactions remained

in the scope. Overall, around 65 per cent of records were removed due to data cleaning,

plus an additional 10 per cent due to statistical edits.

Figures 3.1 to 3.3 show average land price per hectare, average total sale price and average

hectares within each of the ABS Australian Statistical Geography Standard (ASGS)

Statistical Area Level 3 (SA3) regions4 over time, respectively.

More expensive land parcels are usually clustered closer to residential areas (which

potentially indicates that there could be a hobby farm effect). Farms located in SA3

regions further from the coast tend to record a lower average land price per hectare. Land

parcels also tend to be more abundant in areas further away from the Australian coastline.

Nevertheless, in terms of the average sale price, the pattern is mixed.

4SA3 is one of the spatial units defined under the ABS Australian Statistical Geography Standard
(ASGS). SA3s represent the area serviced by regional cities based on a population of between 30,000 and
130,000 people. See ABS (2013) for a more detailed description of SA3 groupings.
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Generally, land productivity (yield) depends on various factors, including (but not limited

to) agronomic variables as well as environmental variables. Agricultural land that is

nutrient rich will be of higher value than land that has eroded or does not have the

qualities that produce high yield of crops. Land located near the coastline experienced

higher average rainfall, which supports more reliable crop or livestock production. It

would seem that, high rainfall properties are likely to attract higher prices per hectare

than agricultural land in more arid areas of inland Australia. As with rainfall, variations

in temperature can affect agricultural production and possibly the value of agricultural

land. The regions that experience hotter temperatures for protracted periods may be less

desirable for some farming activities (and may attract lower land prices, in turn). When

observed alongside rainfall, average maximum temperature may indicate drought-prone

properties, which would be negatively related to the agricultural land values.

Figure 3.1 – Average price per hectare by SA3 (1974-1975 to 2017-2018)

Figure 3.3 – Average hectare by SA3 (1974-1975 to 2017-2018)

57



Figure 3.2 – Average contract price by SA3 (1974-1975 to 2017-2018)

3.4 Hedonic Price Indexes

3.4.1 An overview

When the quality of a product changes, the price index of that product should be

accordingly adjusted. Hedonic price method is the preferred method for carrying out

the quality adjustment (ILO et al. 2004). The hedonic price method consists of analysing

the price of a good based on its characteristics. Rosen (1974) formalised the hedonic

price method, which consists of quantifying the implicit prices of various attributes

of heterogeneous goods, extending the works of Houthakker (1952), Muth (1966), and

Lancaster (1966).5 Thus, the hedonic price method implies that agricultural land is

a heterogeneous good comprising a set of characteristics X = (x1, ..., xb, ..., xB) and is

distinguished through a set of both intrinsic and extrinsic characteristics.

The hedonic price method calculates the implicit marginal price of a set of characteristics

from the price, P (X), of agricultural land. It regresses the price of a product on a

set of characteristics, noting that it may not be possible to independently observe the

prices of each characteristic. At equilibrium, each implicit marginal price, pb, equals

5Rosen’s model applies a nonlinear relationship to describe the price of goods and their inherent
attributes. The implicit price is a function of the quantity of the attribute being bought and of the
quantities of other attributes associated with the good (based on the functional form of the model).
Thus, it is not constant.
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the marginal willingness to pay for this characteristic. Therefore, the calculation of the

different marginal implicit prices requires the derivation of the hedonic price function.

This is done by regressing prices of agricultural land on their inherent attributes. Eq. 3.1

describes a classical hedonic equation, where Y is the price of the agricultural land, P is

property-related attributes, L is locational variables, E is environmental conditions, and

t is an indicator of time.

Y = f(P,L,E, t) (3.1)

In the context of the agricultural sector, hedonic regression analysis has been used to

determine the relationship of the price of agricultural land on the unpriced characteristics

of the land, such as climate conditions and soil conditions (Mendelsohn et al. 1994;

Palmquist & Danielson 1989). The hedonic regression equation can have a linear,

semi-logarithmic or logarithmic–logarithmic functional form. The most common form

of a property-valuation hedonic model is the semi-logarithmic form. Its results are easy

to interpret because the coefficient estimates are direct proportions of the price that

are attributable to each characteristic. A conventional hedonic pricing regression model

has agricultural land market defined by price or price per hectare regressed against

determinant characteristics.6 In practice, the variables are determined based on the

author’s study or data availability.7

In this chapter, we compare two methods, the time-dummy method and the

double-imputation method. These are discussed in Sections 3.4.2 to 3.4.4.

3.4.2 Time-dummy methods

The time-dummy method is the original hedonic method commonly in the form of the

semi-logarithm function.8 Eq. 3.2 is the standard semi-log formulation.

6The fundamental assumption of regression applies that the dependent variable (price, or value in this
case) is known precisely.

7Using a log transformation of land prices as the dependent variable accounts for the value of unpriced
characteristics, which reflects the people’s preferences and the trade-offs and constraints involved in land
purchase decisions.

8See Diewert (2003) and Malpezzi (2003) for a discussion of some of the advantages of the
semi-logarithm model in this context.
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y = α +Xβ +Dγ + ε (3.2)

where y is a F x 1 vector of ln prices, pf (that is, yf = ln(pf )); X is an F x B matrix

of characteristics; D is an F x (C - 1) matrix of time (period) dummy variable; and ε is

an F x 1 vector of random errors. F denotes the number of farms. The parameters to be

estimated are B x 1 vector of the characteristics shadow prices β and (C - 1) x 1 vector

of time period prices γ.9

In the time-dummy method, data on the prices and quality characteristics of a product are

pooled over time. In the model, the logarithm of price is represented by an intercept, the

quality characteristics and time-dummy variables. The time-dummy parameter directly

accounts for the effect of ‘time’ on the logarithm of price. Thus, the quality-adjusted

price index, P ∗
t for period t, can be calculated by taking the exponential of the estimated

time-dummy coefficient, γ∗t , obtained from the hedonic model (Eq. 3.3).

P ∗
t = exp(γ∗t ) (3.3)

When the relative price of land is compared between two periods, for any quality

configuration, the ratio is equivalent to the corresponding exponential of the time-dummy

variables. Hence, the advantage of the time-dummy model includes its simplicity. Its

functional form is neither continuous nor smooth with respect to time.

The time-dummy method to construct hedonic price indexes is applied frequently in

academic research; however, this is not the case by statistical agencies. Some theoreticians

object to the time-dummy technique, favouring alternative hedonic approaches - of which

the imputation method is the most popular (Silver & Heravi 2001). Diewert et al. (2007)

and Hill (2013) discussed other approaches of constructing hedonic price indexes (for

example, the average characteristics method), which are not explored in this chapter.10

9The base period price index is normalised to 1.
10Average-characteristic methods typically construct an average farm for each period. A price is

imputed for this hypothetical farm as a function of its characteristics based on the shadow prices derived
from the hedonic model. As farms are unique with many characteristics, this method will yield results
that are arguably difficult to interpret.
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3.4.3 Hedonic imputation method

In this approach, instead of compiling one hedonic regression (like in the time-dummy

method), two entirely separate hedonic regressions are derived. These are βt in period

t and βt+1 in period t + 1. Thus, the hedonic imputation method estimates a different

hedonic model for each period. The time horizon for each model is partly dependent

on the size of the dataset. Fortunately, there are enough observations in our Australian

dataset to derive a separate model for each year.

Let p∗t+1,f (xt,f ) signify the imputed price in period t + 1 of a farm sold in period t. The

prices for individual farms are imputed as shown in Eq. 3.4 whereby characteristic X, of

farm f , sold in period t is substituted into the hedonic model estimated for the period

t+ 1. These imputed price indexes can be inserted into standard price index formulas.

p∗t+1,f (xt,f ) = exp(
B∑
b=1

β∗
b,t+1xb,t,f ) (3.4)

The Laspeyres-type index considers the farms sold in an earlier period of t. In contrast,

the Paasche-type index considers the farms sold in period t + 1. A single-imputation

price index (Paasche or Laspeyres) imputes prices in only one period. In comparison, a

double-imputation index imputes prices in both periods (see de Haan 2004; Hill & Melser

2008; Hill & Scholz 2017). Equal weight is given to each farm under these price indexes.

In the context of farms, an unweighted structure (that is, each sale of a farm comes with

its own quantity, which is equal to one) is in our opinion more appropriate than using

expenditure share to weight each farm.11 The advantage of the Fisher index is that it

treats both periods symmetrically. The single-imputation price index between periods t

and t + 1 is calculated in Eq. 3.5 to Eq. 3.7, while the double imputation price indexes

is shown in Eq. 3.8 to Eq. 3.10.

Laspeyres single imputation: PLS
t,t+1 =

Ft∏
f=1

[(
p∗t+1,f (xt,f )

pt,f

)1/Ft
]

(3.5)

11Hill and Scholz (2018) advocated for the use of democratic weighting structure in the housing context.

61



Paasche single imputation: P PS
t,t+1 =

Ft+1∏
f=1

[(
pt+1,f

p∗t,f (xt+1,f )

)1/Ft+1
]

(3.6)

Fisher single imputation: P FS
t,t+1 =

[
P PS
t,t+1 × PLS

t,t+1

]1/2

(3.7)

Laspeyres double imputation: PLD
t,t+1 =

Ft∏
f=1

[(
p∗t+1,f (xt,f )

p∗t,f (xt,f )

)1/Ft
]

(3.8)

Paasche double imputation: P PD
t,t+1 =

Ft+1∏
f=1

[(
p∗t+1,f (xt+1,f )

p∗t,f (xt+1,f )

)1/Ft+1
]

(3.9)

Fisher double imputation: P FD
t,t+1 =

[
P PD
t,t+1 × PLD

t,t+1

]1/2

(3.10)

3.4.4 Comparison of hedonic methods

The essence of the hedonic time-dummy method is that it comprises only one regression.

In this case, the data in each period appears as dependent variables. The hedonic dummy

method constrains the value of the parameters of characteristic variables to be constant

over time (that is, characteristics are valued at typical ‘prices’). Due to these restrictions,

the hedonic time-dummy method lacks flexibility in that shadow prices cannot evolve.

For each new period added to the dataset, all the results need to be recompiled. However,

the constant-quality price index requires something to be held constant over time to

differentiate the price change from the quantity mix. Generally, the hedonic imputation

method involves deriving a hedonic price function for each period. This function is then

used to impute estimated prices for non-matched models. The hedonic imputation method

utilises two regression equations based on holding coefficient estimates constant over two

consecutive periods. These prices are then conventionally used in an index formula.

Inherently, the hedonic imputation method is more flexible, as it allows for shadow

prices of characteristics to evolve, and this is a significant advantage. Nevertheless, the

coefficients estimated in the hedonic imputation method are also held constant at average
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prices for characteristics of the two separate hedonic regressions. To date, there has been

research comparing the two approaches conducted by Berndt et al. (1995), Berndt and

Rappaport (2001), Diewert (2003), Silver and Heravi (2003), de Haan (2004), Triplett

(2004), Silver and Heravi (2007) and Melser (2006).

Diewert et al. (2007) advocated for hedonic imputation methods, but recognised that this

method uses more degrees of freedom and could potentially lead to a less reproducible

estimate of price change between the two periods. They suggested that in the case that

the time-dummy and hedonic imputation approaches make symmetric use of data in two

periods and have the same functional form, a plausible approach when different results

arise between the two methods is to take a (geometric) mean of the two.

Berndt and Rappaport (2001) favoured the use of hedonic imputation indexes when

parameters are unstable, and Triplett (2004) noted that product differentiation with

significant turnover in models is a feature of today’s product markets. The inability

of the matched models method to sufficiently deal with high product turnover is

sufficient motivation to use hedonic regression techniques. Compared to the time-dummy,

hedonic imputation methods are not as widely used because they are conceptually more

complicated and also require large datasets. To the best of our knowledge, the only

use of an imputation method is for for the FNC Residential Price Index in the US

and RP Data-Rismark in Australia. The FNC index (see Dorsey et al. 2010) uses the

double-imputation Laspeyres formula, whereas RPData-Rismark uses a non-parametric

method (see Hardman 2011). Regardless of which index-construction method is used,

they both allow for inclusion of environmental attributes, categorical variables, interaction

terms between characteristics, and functions of characteristics. Common concerns with

these hedonic models are multicollinearity and heteroskedasticity.

3.4.5 Methods for incorporating location in hedonic regression

models

Regional dummy variables

Location is an important price-determining factor. There are various ways to account

for locational effects in hedonic models. A common ambition is to eliminate locational
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variation by assigning shadow prices to locations. The easiest way to do this is to include

an identifier of the region in which a farm is located.

Distances to amenities

The distance of each farm to amenities impact on the cost of running a farm. With the

availability of spatial points, we can measure the distance from a farm to a city centre,

nearest train station or port, or closest water source. We can then include the data on

these distances as additional characteristics in the hedonic models. Nevertheless, using

kilometres to amenities as characteristics to account for location is problematic for several

reasons. First, it makes limited use of the geospatial information, discarding potentially

useful information. Second, the location of the farm and aspects like rainfall and climate

of a region are relevant. Third, the effect of distance from amenities on the price of a

farm may be difficult to determine and is not necessarily monotonic. For example, some

crops may grow in specific locations that are not too close to the city centre or transport.

Nonparametric approaches

An alternative to parametric modelling is the use of non-parametric methods. These

methods avoid the problems highlighted by Pinkse and Slade (2010)12, as they can be used

to create flexible, topographical surfaces showing how price varies by location, holding

the other characteristics constant. Geospatial data presents opportunities to improve the

quality of a hedonic pricing model. The exact longitude and latitude for each parcel of

agricultural land can be used to control for locational effects. As hedonic methods can be

applied to any functional form (parametric or non-parametric), they are very flexible to

estimate.

Non-parametric methods provide a natural way of including geospatial data such as a

spline into the index calculation. To the best of our knowledge, only the studies by Bao

and Wan (2004), Brunauer et al. (2010) and Hill and Scholz (2017) have used splines to

12The paper by Pinkse and Slade (2010) raises that typically spatial econometrics is applied in a
mechanical fashion, with variables introduced in spatial econometric models due to being significant, but
without theoretical justification (or priori rationale).
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estimate hedonic models of the real estate market.13

3.5 Model estimation

This section presents four empirical models. The literature does not clearly preference any

functional form for the hedonic model. Models 1 and 2 are semi-parametric, while Models

3 and 4 are non-parametric.14 Model 1 provides a base model that excludes a locational

variable of the property. Model 2 is an ordinary least squares model that contains the

locational dummy variable defined by SA4. Model 3 is a generalised additive model

(GAM) and includes a geospatial spline to estimate variation in prices across location

smoothly. Model 4 is also a GAM and accounts for the nonlinear nature of not only

location but also other dependant variables.

3.5.1 Semiparametric models

Model 1 and Model 2 can be expressed as in Eq. 3.11 and Eq. 3.12, respectively,

y = α +Xβ + ε (3.11)

y = α +Xβ +Dγ + ε (3.12)

where y is a F x 1 vector of log-price, X is an F x B matrix of land characteristics, D is

an F x C− 1 matrix of time (period) dummy variables, and all the observable is reflected

in the error term ε. F denotes the number of farms.

13Hill and Scholz (2017) applied a semi-logarithm hedonic model with locational results captured
using a geospatial spline to estimate house price indexes for Sydney over the period 2001 to 2011. The
characteristics in their model are merely the number of bedrooms, number of bathrooms and land area.

14See Hardle et al. (2004) for an overview of semiparametric models, their properties and estimation.
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3.5.2 Nonparametric models

We allow for a more flexible functional form by introducing splines to the dependent

variables to account for nonlinearity in these variables in Models 3 and 4. In Model 3,

the geospatial data was modelled non-parametrically using a spline function to account

for any topographical (locational) effects in farm values. Model 4 applies splines to both

geospatial data and the selected land characteristics. A GAM, as used in Models 3 and

4, has the advantage of being relatively straightforward to include a smooth function

of the longitude and latitude in the regression process (Hill & Scholz 2017). Further,

GAM is more flexible than a semi-logarithm model, as it avoids the common issue of

dimensionality in fully non-parametric models (for example, see Stone 1986). Model 3

takes the form in Eq. 3.13 and Model 4 is expressed in Eq. 3.14,

y = α +Xβ + s(clat, clong) + ε (3.13)

y = α +Xβ + s(clat, clong) +
G∑

g=1

fg(Zg) + ε (3.14)

where s(clat, clong) denotes a non-parametric function s(.) defined on the latitude and

longitude of the property, clat, clong. f(Zg) is the function defined on land characteristics

Zg. The functional form for s(clat, clong) and Zg is not determined beforehand but driven

by the data.

Model 3 utilises a geospatial spline using spatial coordinates (latitude and longitude) of

the land’s location. In this model, the locational effect is estimated smoothly over the

observation area. Precise modelling of locational effects is needed if there is much variation

within regions. Model 4 includes the smoothing of land characteristics to account for their

non-linear relationship with land values.

GAMs are often described as ‘wiggly models’. These models are generally estimated

with an optimal low-rank approximation of a thin plate spline15 (which has n unknown

parameters). Smoothing parameters are selected to minimise prediction error where n is

not known. The generalised cross-validation (GCV) score is generally preferred, as the

15Thin plate splines are a technique used to estimate smooth functions of continuous variables.
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model does not need to be refitted to subsets of the data, which saves computational time

and effort, noting that the selection of GCV smoothness can result in under-smoothing

when the GCV profile is relatively flat. Here, the random variation can result in ‘too

wiggly’ a fit. Another smoothing parameter option is a restricted maximum likelihood

(REML). The REML method penalises over-fitting, however a disadvantage is that the

result could change in a different run. Thus, the models are fitted using REML, which

Wood (2011) has shown to be more robust to under-smoothing. It is also the smoothing

method used by Hill and Scholz (2017). Practically, the functional form of the splines is

estimated using the GAM function from the R package ‘mgcv’. For further description of

the GAM function and its smoothness selection criteria, see appendix B4 and appendix

B5.

3.5.3 Independent variables

As is common with large datasets, we found a key challenge to be the selection of a

set of sensible, independent variables for the models. Table 3.2 presents the list of

variables selected, and Table 3.3 displays the summary of independent variables used

in each hedonic model. Multicollinearity between variables was a significant issue, as it is

difficult to separate the individual effects of collinear variables. This can cause variables to

appear statistically insignificant when they are significant (for example, between average

temperature and rainfall). Thus, the land characteristics were selected after a review of

factors significant in previous studies, fine-tuning (based on hedonic regression results)

and to control for multicollinearity.

The first independent variable, log-HEC, is the natural log of agricultural land area in

hectares. Typically, larger parcels of land are sold at higher overall prices but at lower

prices per hectare than smaller land parcels. The second group of independent variables

is locational type. As Model 1 provides a base model, we did not include a locational

variable. For Model 2, the location of the farm was included as a dummy variable using

the SA3 regions. The SA3 region dummy variable helped to determine if there are any

differences in the base prices for different regions. If they are significantly different from

0, this supports the assumption that Australia is not a single market for agricultural land.

We also included variables indicating the road distances from each property to the nearest
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Table 3.2 – List of independent variables

Data type Variable Type Description
Farm size log-HEC Numeric Land size for transacted property in hectares
Location LAT and LONG Numeric Geospatial location coordinates (latitude, longitude)

SA3 and SA4 Categorical ABS SA3 and SA4
TKM10 Numeric Distance from property to the nearest town with

population of 10,000
DIST Numeric Distance from property to the closest road network

Structure BED Numeric Number of bedrooms if house is present
BATH Numeric Number of bathrooms if house is present
HOUSE Numeric Number of residential buildings points
SHED Numeric Number of agricultural buildings points

Environmental LANDUSE Alphanumeric Dummy variable to identify land use for purposes
attributes such as: grain, crops, livestock, mixed farming, dairy,

vineyards, vacancy and horticulture
SLOPE Numeric percentage of land parcel that is flat based on the

SR digital-elevation model
AvgRAIN Numeric Annual rainfall assigned to farm by year of sale

(BoM AWAP)
MaxTEMP Numeric Average annual maximum temperature by statistical

area assigned to farm by year of sale
MinTEMP Numeric Average annual minimum temperature by statistical

area assigned to farm by year of sale
ErACID Numeric percentage of land at risk of acidification
ErWATER Numeric percentage of land at risk of water erosion
ErWIND Numeric percentage of land at risk of wind erosion
GRAZ Numeric percentage of land used for grazing
CROP Numeric percentage of land used for cropping
WATs2 Numeric Water cover based on Geoscience Australia Water

Observations from Space data in square meters
IR Categorical 1 indicating irrigation and 0 indicating no irrigation

AWAP: Australian Water Availability Project; BoM: Bureau of Meteorology;
SA3/SA4: Statistical Area Level 3/4
Source: Chancellor et al. 2019
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Table 3.3 – List of independent variables

Data type Variable Model 1 Model 2 Model 3 Model 4
Farm size log-HEC X X X X

Location LAT, LONG x x X(spline) X(spline)
SA3 x X x x
TKM10 X X X X(spline)
DIST X X X X(spline)

Structure BED X X X X

BATH X X X X

SHED X X X X

Environmental LANDUSE X X X X

Attributes SLOPE X X X X(spline)
AvgRAIN X X X X(spline)
MaxTEMP X X X X(spline)
MinTEMP X X X X

ErACID X X X X

ErWATER X X X X

ErWIND X X X X

GRAZ X X X X(spline)
CROP X X X X(spline)
WATs2 X X X X(spline)
IR X X X X

unsealed road and the town centre with a population of 10,000 people. The road network

distances (named DIST in our models) in kilometres were calculated between nodes

(intersections) on the road network based on Geoscience Australia TOPO 250k Series

3 data. Town centre location information is from the ABS Urban Centres and Localities,

derived from the 2016 Australian population census.16

The third group of independent variables considers the structures located on the property.

The value of agricultural land generally increases with the number of structures, with

higher values associated if the structure is a residence (or homestead) that contains a

large number of bedrooms and bathrooms. The number of structures (residence or sheds)

is determined using geographic information systems mapping of land cover. The data is

only available for New South Wales (NSW), Victoria, Queensland, South Australia (SA),

Western Australia (WA) and Tasmania.

One of the most important determinants of agricultural land prices is land use and soil

16Where multiple nodes overlap the property polygon(s), the selection of which one to use is arbitrary.
For vast properties, this adds a potential error. Another source of error is where a property contains
non-adjacent polygons and the part closest to a road network node is not representative of the bulk of
the property. These issues are similar when assigning a node to town centres.
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quality. The fourth group of independent variables contains environmental attributes

of the soil on the property. To measure the quality of each land parcel, we used the

exposure of soil to wind, water and acid as an indicator for erosion. We hypothesised that

the coefficients of these indicators have a negative sign, implying that a buyer pays less

for agricultural land that is potentially more susceptible to erosion.

We also included average rainfall, average minimum and maximum temperature, and

water area, as these various productivity modifiers affect plant growth (Kesteven et al.

2004). Rainfall can often be a substitute for irrigation and therefore, can substantially

affect the productivity of the parcel of land. These variables were constructed using

spatial layer data from the Australian Collaborative Land Use and Management Program.

Further, we constructed a land-use variable using keywords in the CoreLogic primary

land-use variable. These variables are useful, as they provide an indication of production

type at the time of sale and, according to CoreLogic, are maintained continuously and

generally considered to be high quality.

The slope of the land is classified based on the SR digital-elevation model. The four classes

range from ‘1’ for flat to ‘4’ for steep. We included a variable indicating the percentage of

land classified as Class 1 (no slope) under this model. Water is an essential resource for

agricultural production. However, as excessive water coverage might present flood risk, it

is difficult to predict the effect of water on agricultural land values. We expect the sign

of the estimated coefficient will be positive. A positive relationship would support the

hypothesis that land with higher-quality soil has a higher value, holding all other variables

constant.

3.6 Results

This section examines the qualities that are awarded a premium in the Australian

agricultural land market from 1974-1975 to 2017-2018, and compares the results obtained

from the four hedonic models. Regression results at the Australian level for all estimated

agricultural land hedonic models are presented in Table 3.4.

Overall, the fit of all models is reasonable. Model 2 (regional dummy model) explains

about 67 per cent of average price change variation. In contrast, Model 1 (no locational
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Table 3.4 – Regression results, selected agricultural land characteristics
(Australia)

Model 1 Model 2 Model 3 Model 4

log(H) 0.46∗∗∗ (0.02) 0.47∗∗∗ (0.02) 0.47∗∗∗ (0.02) 0.47∗∗∗ (0.02)
Beef 0.11∗∗ (0.04) 0.14∗∗∗ (0.04) 0.14∗∗∗ (0.04) 0.16∗∗∗ (0.04)
Dairy 0.35∗∗∗ (0.04) 0.29∗∗∗ (0.04) 0.28∗∗∗ (0.04) 0.31∗∗∗ (0.04)
Forestry −0.51∗∗∗ (0.05) −0.23∗∗∗ (0.05) −0.220∗∗∗ (0.04) −0.187∗∗∗ (0.05)
General 0.347∗∗∗ (0.04) 0.115∗∗∗ (0.04) 0.178∗∗∗ (0.04) 0.181∗∗∗ (0.04)
Grain and oth crops 0.151∗∗∗ (0.04) 0.18∗∗∗ (0.04) 0.135∗∗∗ (0.04) 0.158∗∗∗ (0.05)
Horticulture 0.406∗∗∗ (0.04) 0.408∗∗∗ (0.04) 0.366∗∗∗ (0.04) 0.394∗∗∗ (0.04)
Livestock-Crops 0.122∗∗∗ (0.04) 0.108∗∗∗ (0.04) 0.114∗∗∗ (0.04) 0.131∗∗∗ (0.04)
Mixed farming 0.477∗∗∗ (0.04) 0.133∗∗∗ (0.04) 0.148∗∗∗ (0.04) 0.128∗∗∗ (0.04)
Other livestock 0.12∗∗∗ (0.04) 0.09∗∗ (0.04) 0.10∗∗ (0.04) 0.11∗∗∗ (0.04)
Sheep 0.075∗ (0.05) 0.05 (0.04) 0.04 (0.04) 0.04 (0.04)
BED 0.014∗∗∗ (0.02) 0.015∗∗∗ (0.02) 0.013∗∗∗ (0.02) 0.01∗∗∗ (0.02)
BATH 0.111∗∗∗ (0.03) 0.085∗∗∗ (0.03) 0.09∗∗∗ (0.03) 0.09∗∗∗ (0.03)
HOUSE 0.017∗∗∗ (0.01) 0.038∗∗∗ (0.01) 0.03∗∗∗ (0.01) 0.03∗∗∗ (0.01)
SHED 0.083∗∗∗ (0.04) 0.084∗∗∗ (0.04) 0.09∗∗∗ (0.04) 0.08∗∗∗ (0.04)
ErACID 0.003∗∗∗ (0.00) 0.00∗∗∗ (0.00) 0.00∗∗∗ (0.00) 0.003∗∗∗ (0.00)
ErWATER −0.003∗∗∗ (0.00) −0.003∗∗∗ (0.00) −0.00∗∗∗ (0.00) −0.00∗∗ (0.00)
ErWIND 0.01∗∗∗ (0.00) 0.01∗∗∗ (0.00) 0.01∗∗∗ (0.00) 0.005∗∗∗ (0.00)
minTEMP 0.043∗∗∗ (0.02) 0.050∗∗∗ (0.02) 0.056∗∗∗ (0.03)
maxTEMP −0.044∗∗∗ (0.01) −0.020∗∗∗ (0.02) −0.016∗∗∗ (0.03)
avgRAIN 0.01∗∗∗ (0.00) 0.00∗∗∗ (0.00) 0.01∗∗∗ (0.00)
DIST −0.00∗∗∗ (0.00) −0.00∗∗∗ (0.00) −0.00∗∗∗ (0.00) −0.00∗∗∗ (0.00)
TKM10 −0.02∗∗∗ (0.00) −0.02∗∗∗ (0.00) −0.02∗∗∗ (0.00)
GRAZ −0.019∗∗∗ (0.06) 0.011∗ (0.06) −0.02 (0.06)
CROP −0.014∗∗ (0.07) 0.063∗∗∗ (0.07) 0.10∗∗∗ (0.07)
SLOPE 0.397∗∗∗ (0.07) 0.046∗∗∗ (0.06) 0.06∗∗∗ (0.06)
WATm2 0.00∗∗∗ (0.00) 0.00∗∗∗ (0.00) 0.00∗∗∗ (0.00) 0.00∗∗∗ (0.00)
IR 0.179∗∗∗ (0.01) 0.18∗∗∗ (0.01) 0.19∗∗∗ (0.09) 0.19∗∗∗ (0.09)
Constant 7.62∗∗∗ (0.09) 7.748∗∗∗ (0.07) 7.161∗∗∗ (0.07) 7.40∗∗∗ (0.05)

Approximate significance of smooth terms: edf (F-stat) edf (F-stat)
s(LAT,LONG) 28.9***(359.4) 28.9***(293.5)
s(minTEMP) 7.50*** (70.6)
s(maxTEMP) 7.79*** (48.2)
s(avgRAIN) 8.91***(416.9)
s(TKM10) 7.79*** (412.8)
s(GRAZ) 7.88*** (19.9)
s(CROP) 5.50*** ( 53.8)
s(SLOPE) 8.56*** ( 64.9)

Observations 147,638 147,638 147,638 147,638
Adjusted R2 0.64 0.67 0.67 0.68
UBRE 140,768 137,983

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: Coefficients generated from semi-log hedonic regression model. Model 2 coefficients for regional
dummy are shown in Figure 3.4. Model 3 coefficients for the geospatial splice are shown in Figure 3.5.
Missing coefficient indicates the variable was not included in the model.
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variable) only had an explanatory factor of 64 per cent. These results confirm that

location is an important price-determining factors. Model 3 (GAM with a geospatial

spline) generated almost identical explanatory power of 67 per cent. This result suggests

that there is little to be gained from using a geospatial spline over a model that uses a

regional dummy variable. One interpretation of this outcome is that the precise modelling

of locational effects has already been explained by the land characteristics included in the

model. Thus, the locational quality shift within regions are not observed. Consequently,

Model 4 is the best performing model (R-squared of 68 per cent). This suggests that

higher explanatory power could be achieved by introducing nonlinear functions for the

independent variables.

Land size (log(H)) is significant and positive, suggesting that the price tends to be higher

for larger farms. Also, farm characteristics such as average rainfall (avgRAIN), minimum

temperature (minTEMP), land gradient (SLOPE), water availability (WATm2), irrigation

(IR) and having structures on the farm (BED, BATH, HOUSE and SHED) all appear to

affect agricultural land values positively. The following discussion refers to the regression

results of Model 2.

The presence of a house or buildings affects land prices. Specifically, the number of

buildings has a significant and positive relation to price. Having a residence on a farm

(based on Model 2) is associated with 3.8 per cent higher price (all other factors held

constant), while having sheds adds 8.4 per cent to the land value. A bathroom adds

8.5 per cent to land value; however, the total number of bathrooms may be a proxy of

the size (and quality) of the residence on a farm.
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Flat terrain has a significant effect on agricultural land prices, suggesting that hilly land

may result in a slight reduction in price. Features such as water cover (WATm2) have more

nuanced relationships with agricultural land value. The negative drivers include average

maximum temperatures, water erosion risk (ErWATER) and use of land for grazing

(GRAZ) and cropping (CROP) purposes. A 1 per cent increase in average maximum

temperature results in a 2.0 per cent decrease in price.

Both distance to the nearest road (DIST) and distance to the nearest town (TKM10)

are statistically significant and negative, suggesting that land value falls with increases in

remoteness and reduced access to infrastructure. The comparison of the type of land use

is in contrast to vacant land. Forestry contributes negatively to land price compared to

vacant land. The most significant adjustment to price based on land use is horticulture

(40.8 per cent). One reason for this is that horticulture farms are more likely to be located

closer to urban areas or that they are more profitable per hectare. Dairy farming adds

29.2 per cent value compared to vacant land.

While the coefficients align with expectations for most of the variables, results from the

soil variables, ErAcid and ErWind, was unexpected. A high risk of acidification and wind

erosion both appear to have a (slight) positive relationship to land values. Although this

seems counterintuitive, it could potentially be endogenous due to omitted variables on

soil quality such as the fraction of organic carbon mass, clay, silt, sand, and soil nutrients

that a presence in the soil.17 Another reason could be due to the intensity of land use

versus farmers’ investment in land management.

Figure 3.4 presents the coefficients by SA3. As shown, the SA3 towards the south and

those SA3s closer to urban regions and the east coast generally have higher coefficients.

These results align with our expectations. Farms along the Australian coastline are

typically smaller and tend to benefit from higher rainfall. In contrast, farms in the western

region of Australia are generally larger than in the south and experience moderate climate

conditions suitable for large-scale cropping. Farms in the centre or Australia are generally

large-scale grazing properties, which seemed to attract lower prices on a per-hectare basis.

Figure 3.5 shows the coefficient for the smooth latitude and longitude under Model 3.

17See CSIRO Soil and Landscape Grid of Australia for a description of soil quality indicators at
https://www.csiro.au/en/research/natural-environment/land/soil-grid.
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Figure 3.4 – Model 2, SA3 region coefficients

The solid line indicates changes in the coefficient, while the dotted lines are the standard

errors of the coefficient. Similar to Model 2, the estimated coefficients are larger towards

the southern areas of Australia closer to the coast. These regions generally experience

higher levels of average rainfall and are located closer to highly populated regions.

Figure 3.5 – Model 3, Smooth location coefficient of longitude and latitude

3.6.1 Model fit

There are several ways to explore the model fit. The most common is to look at the akaike

information criterion (AIC) and bayesian information criterion (BIC), with the smaller

values indicating a ‘better’ fit. Table 3.5 compares the model fit using two different

criteria. The geospatial spline model underperforms its regional dummies counterpart

(Model 2) based on the BIC and AIC. However, the use of additional smoothing on

farm characteristics (Model 4) outperforms the other models based on the BIC. Thus, we
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conclude that including a location-type variable in the model (whether using a regional

dummy code or using a latitude and longitude spline) is essential.

Table 3.5 – Comparing the performance of the semi-log models

Akaike info. Bayesian info.
criterion criterion

Model 1 (M1) 269493.0 270247.8
Model 2 (M2) 251854.6 261344.3
Model 3 (M3) 262222.2 263260.2
Model 4 (M4) 257431.2 258989.2

Figure 3.6 shows how the predicted mean indexes of the time dummy hedonic models

track the mean sales price index. In all cases, the price index is normalised to one at

period 1. For all other years, the index value denotes the cumulative price change. The

result indicates that the time dumhedonic models perform reasonably well in estimating

agricultural land prices. Generally, all the models track relatively well between predicted

models and the actual sales price mean measures, with small divergences observed from

2009 onwards.

Figure 3.6 – Australian median land price indexes (1975-76 to 2017-2018)
(predicted v. actual)

Notes: ‘TD’ refers to the time dummy method;‘M1’ refers to model 1;
‘M2’ refers to model 2; ‘M3’ refers to model 3; ‘M4’ refers to model 4.

The agricultural land market experienced an extended boom beginning around 1995.

Although there was a slight correction around the global financial crisis in 2008 and 2009,

the boom resumed from 2011 onwards, albeit at a slower growth rate. The Australian
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Bureau of Agriculture and Resource Economics and Science (ABARES) Australian Farm

Survey Results (2013) found significant jumps in land values between 2009 and 2013 and

a growing disconnect with farm incomes. The agricultural land market experienced an

extended boom beginning around 1995. Although there was a slight correction around

the global financial crisis in 2008 and 2009, the boom resumed from 2011 onwards, albeit

at a slower growth rate. Most notably in 2013, prices jumped from AU$220–$240 to

over AU$1,200 a hectare on average across Australia. Those outcomes vary enormously,

depending on how the land is used and on local conditions.

3.6.2 Constant-quality price indexes

Hedonic methods compare ‘like with like’ to construct a pure price comparison of the same

product offered over time. These models are generally used to construct quality-adjusted

price indexes to price products (such as residential property), which can differ from one

period to the next. The agricultural land market is an extreme example in that every

farm is different. The mean and median indexes may not eliminate heterogeneity in

agricultural land to a sufficient degree. Therefore, they might suffer from structural shifts

and substitution effects leading to, in the case of agricultural land, an upward bias over

time.

Figure 3.7 shows the price indexes obtained from all the models as well as the simple

median and mean indexes using the sales data. The results of the four hedonic models

obtained using the time-dummy method and the hedonic imputation method are almost

indistinguishable. This suggests that there is minimal gain from including a geospatial

spline in preference to a regional dummy. Nevertheless, more significant variations at the

state level are observed, which is discussed in Section 3.6.3.

The constant-quality agricultural land price indexes revised the cumulative price change

downwards from 1975 to 2018 by around 140 per cent. This result suggests that

the average quality of the agricultural land being sold over time has been increasing.

One explanation of why the quality of land has increased over time could be due to

more sophisticated land management practices, such as reductions in the intensity of

agricultural chemical; more careful use of fertilisers; and more flexible approaches to

grazing management to reduce soil erosion. Another reason is the increased investment
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Figure 3.7 –Comparison of Australian land price indexes (1975-76 to 2017-2018)

Notes: ‘TD’ refers to the time dummy method; ‘HI’ refers to the hedonic imputation method;
‘M1’ refers to model 1; ‘M2’ refers to model 2; ‘M3’ refers to model 3; ‘M4’ refers to model 4.

in capital (for example machinery and equipment and agricultural buildings), which over

the past 20 years has more than doubled (ABS, 2017a).

3.6.3 State level results

This section presents a summary of results for six states (New South Wales, Victoria,

Queensland, South Australia, Western Australia and Tasmania). The growth rates in

agricultural land price vary significantly across states. Some of the critical factors include

weather patterns and land use, which can also vary over time. Additional results for

different states are in Appendices B.3.1 and B.3.2.

Figure 3.8 depicts the cumulative price indexes based on two price-construction methods

(time-dummy model and double imputation), four spatial hedonic pricing models for

six states, and the mean and median indexes based on sales data. We evaluated the

constant-quality price indexes for their overall robustness for different models. Ideally, all

price indexes under the four hedonic models should follow a similar pattern so that the

selection of the method does not influence the results. Overall, the resulting price indexes

for agricultural land are typically increasing, with the price indexes accounting for quality
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Figure 3.8 – Comparison of different methods of price measurement
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being below the mean and median indexes, except for Western Australia.

There are some significant differences across price index construction methods at the state

level. For example, the price trends for SA under double imputation differs from the price

trends under the time-dummy method. In contrast, both methods of hedonic regression

produce similar results for Queensland and Victoria. In the case of Western Australia, the

time-dummy model exhibits higher volatility compared with the imputation method. The

NSW time-dummy indexes for Model 2 recorded much lower growth patterns compared

to other models.

Land price indexes are volatile due to outliers and nonlinear relationships between

agricultural land prices and land characteristics. Divergence between the mean and

median price indexes for Victoria and the constant-quality price indexes started to increase

around 2006, coinciding with the managed investment scheme tree-plantation policy in

south-west Victoria’s dairy region. The dip in 2012 in Queensland may be due to the

suspension of live exports introduced that year.

Table 3.6 displays the percentage difference between the cumulative price indexes of

the four models using the time-dummy and imputation method, compared to the sales

price mean and median. The results are striking in two respects. First, the constant

price indexes derived using the imputation method (on average) discount the price of

agricultural land more than under the time-dummy method for the more populous states

(New South Wales and Victoria) - the opposite of which occurs for Queensland, South

Australia, Western Australia and Tasmania. The gap varies quite substantially by state

and by model. One explanation for this finding is that the average locational quality of

the agricultural land sold in more populous states such as New South Wales and Victoria

is declining over time. Our hedonic models under the imputation-method correct for this

quality shift. In contrast, the time-dummy-based indexes do not. Many of the land price

drivers identified at the national level are the same at state level. See Appendix B.3 for

a more detailed analysis of state level coefficients.

State level model fit

Figure 3.9 shows how the predicted model tracks with the sales data. Each predicted

model tracks relatively well when compared to the actual sales price mean and median
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Table 3.6 –Descriptive measures of different index methods by state (% change)

Time-dummy method Double-imputation method
M1 M2 M3 M4 M1 M2 M3 M4

NSW Average 2.6 2.7 2.8 3.1 2.3 2.4 2.4 2.3
Standard deviation (1.1) (1.1) (1.2) (1.4) (1.0) (1.1) (1.1) (1.1)
Diff. from mean -44.8 -41.8 -40.4 -30.2 -46.8 -42.1 -43.8 -46.4
Diff. from median -49.9 -47.1 -45.9 -36.5 -51.7 -47.4 -49.0 -51.3

Vic Average 4.0 4.3 4.4 4.6 3.8 4.2 3.8 4.1
Standard deviation (2.5) (2.7) (2.8) (2.9) (2.4) (2.6) (2.3) (2.6)
Diff. from mean -44.1 -39.2 -38.0 -34.3 -46.4 -41.8 -47.3 -42.9
Diff. from median -39.8 -34.6 -33.4 -29.3 -42.3 -37.4 -43.3 -38.5

Qld Average 2.0 2.1 2.1 2.1 2.1 2.4 2.2 2.3
Standard deviation (1.0) (1.0) (1.0) (1.0) (1.0) (1.2) (1.1) (1.1)
Diff. from mean -50.0 -47.8 -48.9 -49.6 -48.1 -39.2 -45.5 -44.1
Diff. from median -53.9 -51.9 -52.8 -53.5 -52.1 -43.9 -49.7 -48.4

SA Average 1.5 1.5 1.8 1.9 1.5 1.5 1.8 1.5
Standard deviation (0.5) (0.5) (0.6) (0.6) (0.5) (0.5) (0.7) (0.5)
Diff. from mean -49.1 -47.6 -34.6 -32.5 -40.5 -47.9 -21.0 -34.9
Diff. from median -43.8 -42.2 -27.8 -25.5 -34.4 -42.5 -12.9 -28.3

WA Average 2.7 2.7 2.7 2.8 2.9 2.9 2.6 2.6
Standard deviation (1.1) (1.2) (1.2) (1.3) (1.5) (1.5) (1.1) (1.1)
Diff. from mean -28.9 -27.8 -28.1 -26.0 -16.0 -16.0 -33.0 -33.0
Diff. from median -11.5 -10.1 -10.5 -7.9 4.6 4.6 -16.7 -16.7

Tas Average 2.4 2.3 2.3 2.3 2.4 2.4 2.4 2.3
Standard deviation (1.0) (1.0) (1.0) (1.0) (1.1) (1.1) (1.1) (1.1)
Diff. from mean -22.3 -26.9 -28.9 -27.8 -26.3 -26.3 -25.0 -34.8
Diff. from median -14.8 -41.2 -52.4 -45.9 -37.5 -37.5 -30.2 -85.8

measures, except for NSW. The indexes compiled using geospatial splines (Models 3 and

4) increase quicker than the indexes calculated without a location indicator in Model 1

and using regional dummies in Model 2. One explanation for this is that a part of the

quality shift must be locational.

Table 3.7 shows the R-squared for Model 2. The hedonic time-dummy generally achieved

higher R-squared results compared to the average R-squared from the double-imputation

method. The differences between methods fall within a relatively small range for

most states. The exception is Victoria, where the time-dummy method performs

significantly better, with Model 2 recording 72 compared to an average of 0.58 under

the double-imputation method. The performance of each method appears to depend on

the state. Whereas for Victoria and New South Wales double imputation performs best,

in Queensland, Western Australia and Tasmania, the time-dummy appears to perform

well.
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Figure 3.9 – Median land price indexes, predicted v. actual (state level)

Table 3.7 – R-squared comparison for Model 2 (state level)

NSW Vic Qld SA WA Tas

Hedonic-imputation 0.59 0.58 0.51 0.69 0.65 0.58
Time-dummy 0.62 0.72 0.64 0.72 0.71 0.69
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3.7 Conclusion

This chapter identifies and quantifies the drivers of Australian agricultural land prices.

Recent availability of more administrative and spatial datasets on Australian agricultural

land offer opportunities and benefits to produce new indicators of agricultural value and

the provision of an alternative source of data to produce constant-quality price indexes.

For example, geospatial data allows for the use of spatial linkages to integrate sales data

with characteristics of a farm. Thus far, there does not seem to be a consensus in the

literature outlining how best to apply geospatial data in the farm context.

This chapter presented a selection of spatial hedonic models to measure the variation

in agricultural land prices, allowing for great insight into the diverse characteristics that

influence land prices. In the models that include a geospatial spline, the locational effect is

smoothly estimated over the entire area. Precise modelling of locational effects is needed

when there is much variation within regions. We find that location is an important driver

of agricultural land prices, and further showed that splines (or some other non-parametric

methods) provide a flexible way of incorporating geospatial data into a hedonic model.

This chapter makes two contributions to the area of agricultural land valuations. First,

the research advanced our understanding of the fundamental drivers and determinants

of agricultural land values by considering new hedonic pricing methods. In general, the

results show that the environmental attributes of farm property significantly affect price.

More precisely, rainfall, temperature, farm size, land use, land gradient and structures on

a farm positively affect agricultural land values. Features, such as distance to the nearest

road or town, rainfall and water cover have more nuanced relationships with agricultural

land values. As the relationship between land and its determinants are better understood,

it may be possible to estimate its values more precisely.

Two methods for constructing constant-quality price indexes are applied to investigate if

different methods reveal significantly different growth rates in agricultural land. The

results show that the imputation indexes achieve lower standard errors, while the

time-dummy indexes achieve higher explanatory power. The imputation approach is

more flexible, as coefficients are allow to varying over time. The time-dummy approach

becomes impracticable for long periods because of the need to revise the whole time series
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for every new period added.

The chapter shows the importance of accounting for quality in agricultural land. The

constant-quality price index at the Australian level revises downwards the cumulative

price change, compared to the median sales price index from 1975 to 2018, by around

140 per cent. Similarly, the constant-quality price index for NSW, Victoria, Queensland

and SA revises downwards the cumulative price change between the ranges of 60 per cent

to 140 per cent. Interestingly, WA’s constant-quality price index has a relatively similar

profile to the mean price index. Standard errors across all the models are generally very

low, indicating stable results.

The empirical findings of this chapter suggest that when both locational and

environmental land attributes are used to explain land prices, one sees a significantly

lower growth rate in prices. One interpretation of this result is that the average quality

of the agricultural land being sold over time has been increasing. By drawing on data

from transaction sales, we have shown that it is possible to compile quality-adjusted price

indexes for agricultural land at state levels.
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Chapter 4

MFP Growth and the Australian

Agriculture Sector

4.1 Introduction

Policymakers have long recognised increasing productivity as an important source

of growth in Australia’s agriculture sector. Over the past two decades, Australian

governments have employed several reforms to encourage market competition, increase

farming-related research and development and reduce regulatory burden (Commonwealth

of Australia 2015; Gray et al. 2014). While these reforms facilitated structural change, it

is not easy to link reforms to productivity growth. Lack of sufficient data is an essential

factor. The assessment of land quality is vital for improving and maintaining productivity

and economic growth in the agricultural industry. In many countries, including Australia,

agricultural land (or ‘land’) is a significant environmental asset1 in the national balance

sheet. In 2020, land (commercial and rural) represents 91 per cent of the value of

Australian environmental assets (or 46 per cent of non-financial assets).

Australian farms may have depleted natural resources; however, environmental costs of

loss of land and water quality — and thus, biodiversity — have never been adequately

measured (Aplin 2002). Over the long term, agricultural output has risen steadily, while

1Environmental assets in the national balance sheet include land, subsoil assets and timber.
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short-term changes remain very volatile. The causes of these fluctuations can be linked to

demand shocks in international markets and weather conditions. The pattern of output,

land prices and productivity is highly correlate to these weather occurrences. Australia

experienced prolonged drought in the 1980s and again from 1994–1995, 2002–2003 and

2006–2007. Bushfires in 1983, 2003, 2006 and 2009 affected large areas of agricultural land

and caused loss of livestock and infrastructure. In the last decade, two major cyclones

have devastated banana and sugarcane crops in Northern Australia. The ensuing 2010

and 2011 floods damaged crops and livestock across Eastern Australia (ABS 2010).

Scientists forecast climate change will affect weather patterns in Australia, with

predictions of a wetter and warmer climate in Northern Australia. At the same time,

the southern regions will experience drier and warmer temperatures (International Panel

on Climate Change 2007). Scientists have also predicted an increase in the frequency and

severity of droughts and natural disasters such as cyclones, fires and floods.

Given the importance of farm output for food security, understanding the contribution

of land quality in agricultural productivity is an essential public policy issue. The most

common measure of productivity is multifactor productivity (MFP), which measures how

efficiently farmers produce output based on all their inputs. MFP is derived by an index

of output compared with an index of inputs (for example, labour, capital and intermediate

use), and land is a factor of production, as it is a crucial asset required to produce farm

outputs.

Over the past 20 years, agricultural MFP growth has slowed, declining to 0.9 per cent

a year from the late 1990s onwards (ABS 2015; Sheng et al. 2010). The unique

characteristics of the agriculture sector warrant careful interpretation of official measures

of productivity produced. This is because agricultural activity relies heavily on land size

and quality; however, land quality is not accounted for in official productivity measures

produced by the Australian Bureau of Statistics (ABS). The ABS MFP measure of the

agriculture productivity assumes that the volume of land does not change over time.

In other words, land has zero volume growth. This assumption implies that in volume

terms, the effects of land degradation, deforestation, reforestation or land improvements

and rural–urban rezoning net to zero.

This chapter aims to enhance estimates of productivity in Australia’s agriculture sector by
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accounting for changes in the quality of agricultural land . We apply constant-quality land

price indexes which reflect the evolution of the prices of agricultural land with the level of

quality being fixed to show the relationship between productivity and land quality. Data

from the national accounts and administrative data sources were combined to develop

adjusted measures of productivity accounting for land quality. Two adjustments were

applied to the agriculture sector MFP and are described in Section ??. First, the

productive capital stock (PKS) of agricultural land is adjusted for changes in quality.

Second, the user cost of capital is adjusted by applying constant-quality price indexes for

land. These modifications materially affect the rate of growth of land volume and thus,

productivity estimates.

Section 4.2 provides previous analyses of Australian agriculture productivity, and Section

4.3 describes the productivity framework. The adjustments used to account for changes

in quality to agricultural land are provided in Section 4.4. Section 4.5 evaluates the

adjusted productivity performance for Australia and the states, and Section 4.6 concludes

the chapter.

4.2 Related Literature

MFP studies can be broadly divided into two categories — those that use firm-level

data and those that use national accounts (macro-level) data. The earliest firm-level

data study, to the author’s knowledge, was conducted by Lawrence and McKay’s (1980).

They developed an MFP estimate of the Australian sheep industry using data from the

Australian Sheep Industry Survey covering the period between 1952–1953 and 1976–1977.

MFP growth over this period recorded an average of 2.9 per cent per year, mainly driven

by reallocation between labour and capital. Similarly, Knopke (1988) produced MFP

estimates of the Australian dairy industry, which showed that average dairy farms’ MFP

growth between 1967–1968 and 1982–1983 was 1.5 per cent annually, noting that this

growth rate varied across regions.

Knopke et al. (1995) and Mullen and Cox (1996) estimated MFP growth for the broadacre

agriculture industry using the Australian Agricultural and Grazing Industry Survey data.

They showed that average MFP growth was around 2.5 per cent per year between

1952–1953 and 1993–1994. They also noted that agricultural MFP was sensitive to
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different index-construction methods. Later, Zhao et al. (2012) developed MFP estimates

using farm-level data for the Australian broadacre and dairy sectors. Between 1977–1978

and 2010–2011, they showed that the growth rate of broadacre MFP was an average of

1.4 per cent annually.

While firm-level data studies provide deeper insight into the productivity of agriculture

subsectors, they are typically limited in scope and coverage. For example, the Australian

Bureau of Agricultural and Resources Economics and Science (ABARES) farm survey

data has limited industry coverage. It does not include information on the quality of

inputs (such as land, capital and labour).

Powell (1974) published the first study that utilised national accounts data to measure

Australian agricultural MFP growth. The author constructed output by deflating value

added by a producer price index. In contrast, total input was constructed by deflating

current price series for capital and labour by appropriate price indexes. Powell (1974)

found that Australian agricultural productivity rose by 2.0 per cent a year between

1920–1921 and 1969–1970, predominately due to technological progress.

The Australian Bureau of Statistics (ABS) first attempted to measure agricultural MFP

growth using aggregate national accounts data in 2000 and later in 2007. The ABS

produced both value-added and gross output MFP measures for the Australian agriculture

industries. These series are available for value-added estimates from 1989–1990 and

only from 1994–1995 for gross output estimates. The Productivity Commission (2005)

subsequently extended ABS estimates to cover the period from 1970–1971 to 2002–2003.

Importantly, agricultural production produces some outputs (such as greenhouse gases and

environmental amenities) that are not traded in markets. Such environmental impacts,

which are a potential concern for measures of production and productivity more broadly

(Feldstein 2017), are not explicitly addressed in either the ABS or ABARES measures of

agriculture sector productivity.
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4.3 Methodology

4.3.1 MFP framework

Productivity growth is commonly measured as growth in outputs relative to the growth

of factor inputs. Typically, growth in outputs can be achieved through supplying more

inputs or through increases in the efficiency by which inputs are used to produce outputs.

Statistical agencies (including the ABS) generally use the growth-accounting method to

measure MFP (Ball, Bureau, Nehring et al. 1997; Economic Research Service 2009; Fuglie

& Wang 2012; OECD 2010). The first use of a growth-accounting-based index to compile

MFP estimates was by Jorgenson and Griliches (1967).

In the Solow (1957) growth accounting framework, At is period t MFP and the growth

rate of At represents MFP growth. The measure of MFP growth in period t within the

above framework is given by Eq. 4.1,

MFPt,t−1 =
Yt,t−1

It,t−1

(4.1)

where Yt,t−1 is (1 plus) the growth rate of outputs and It,t−1 denotes the growth rate of

aggregate inputs, consisting of produced capital and labour. That is, It,t−1 is a weighted

combination of the growth rate of aggregate productive capital services (Kt,t−1) and the

growth rate of aggregate labour (Lt,t−1).

To construct the aggregate inputs growth measure (It,t−1), the growth rate of different

inputs must be weighted. According to production theory (under some simplifying

assumptions), the weights are factor income (or cost) shares, which are derived using

the total input costs. Eq. 4.2 shows the total input costs at time t (Xt),

Xt = uKt ·Kt + wt · Lt (4.2)

where uKt = (uK1,t, .., u
K
j,t, .., u

K
J,t) denotes the user costs of produced capital, and wt =

(w1,t, .., wh,t, .., wH,t) denotes the wage rates of different types of workers. The prices of
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capital inputs (produced) are represented by user costs,2 and the cost of inputs is obtained

by multiplying the price vectors (uKt , wt) with the corresponding quantity vectors (Kt, Lt).

Thus, the factor income (or cost) shares are defined as follows: SK
t ≡ uKt · Kt/Xt for

produced capital inputs and SL
t ≡ wt · Lt/Xt for labour inputs.

For every period, income (or cost) shares are derived and combined with growth rates

of factor inputs to produce the growth rate of aggregate inputs. Specifically, It,t−1 is

computed as in Eq. 4.3,

It,t−1 = (Kt,t−1)S̄
K
t (Lt,t−1)S̄

L
t (4.3)

where S̄K
t , and S̄L

t are the corresponding average of the factor income (or cost) shares

in period t and t - 1 of produced capital and labour, respectively. The terms Kt,t−1 and

Lt,t−1 are the growth rates of aggregate productive capital services and aggregate labour,

respectively.

By taking the natural log of Eq. 4.1 and with rearrangement, the contribution of MFP

to output growth components that are additive can be measured by Eq. 4.4.

ln(Yt,t−1) = ln(MFPt,t−1) + ln(It,t−1)

= ln(MFPt,t−1) + S̄K
t ln(Kt,t−1) + S̄L

t ln(Lt,t−1)
(4.4)

The growth accounting framework, as shown in Eq. 4.4, is used to measure the

contribution of input factors to output growth and to estimate the rate of MFP growth

indirectly. The rate of output growth is the same as the growth rate of MFP, plus a

weighted average of capital and labour growth. The additive nature of this framework

enables the role of all inputs and MFP to output growth to be quantified. It supports

analysis of the compositional change of the inputs over time due to variations between

produced capital and labour inputs.

2User costs capture the marginal productivity of each kind of capital service. Since under cost
minimisation the marginal productivity of each input factor equals its real input price, user costs can be
used as prices of capital inputs.
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4.4 Data Construction

4.4.1 Output

The output measure applied was a volume measure of value-added, which is the same

as that provided by the ABS (2017a). Volume measures are not sensitive to price and

exchange rate changes. A common tool for assessing productivity trends is the value-added

MFP measure.3

4.4.2 Labour input

The labour input is calculated by using Ht, the indexes of hours worked at time t in

the agriculture sector. This index is derived using total hours worked based on the

ABS (2017b) Labour Force Survey, as given by Lt,t−1 = Ht

Ht−1
. The survey derives hours

worked by averaging employment and average hours worked. Hours worked is the preferred

concept, as it provides a more accurate measure of labour input compared to employment

(or wages).

4.4.3 Capital input

Following the ABS (2016b), the produced capital inputs were compiled at the asset-type

level. The number of asset types of produced capital used in the production model is

denoted by J (indexed j = 1...J). The assumption is that the service flow of each type of

produced asset (Kj,t) is proportional to the produced capital stock (PKSj,t) is applied.

That is, Kj,t = γtPKSj,t, where γt is the capacity utilisation rate and PKSj,t is the

productive capital stock. The capacity utilisation rate is assumed to be constant over

time. Thus, for each type of asset, the growth rate of produced capital services equals the

growth rate of produced capital stock. The growth rate of PKS for all assets (Kt,t−1) is

calculated as the growth rate of the stock of each produced asset types weighted by their

3The ABS value-added MFP measure recognised capital (including land) and labour as inputs into
the production process. The MFP measure is derived as a Tornqvist index.
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user cost shares. Specifically, Kt,t−1 is computed using a Törnqvist index (Eq. 4.5),

Kt,t−1 =
16∏
j=1

(
Kj,t

Kj,t−1

)s̄Kj,t

=
16∏
j=1

(
PKSj,t

PKSj,t−1

)s̄Kj,t

(4.5)

where s̄Kj,t = 1
2

(
uK
j,tKj,t∑16

j=1 u
K
j,tKj,t

+
uK
j,t−1Kj,t−1∑16

j=1 u
K
j,t−1Kj,t−1

)
are weights calculated as the two-period

average value share of each type of capital services.

Productive capital stock (PKS), PKSj,t, is estimated using a perpetual inventory method

(PIM)4 to gross-fixed capital-formation (investment) volumes at the asset-type level,

combined with age-efficiency profiles.

The user cost of produced capital, uKj,t, is derived using the end of period traditional user

cost approach. We further let Vj,t−1 and Vj,t denote the market value of asset type j at

the beginning and end of period t. Also, let PK
j,t denote the ex-ante expected price of one

unit of asset type j at the beginning of period t and Sj,t the corresponding stock of asset

type j so that Vj,t = PK
j,tSj,t. Thus, it is assumed that in every period, the market values

can be disaggregated into their price and quantity components. Now, let the period t

expected inflation rate for the price of a unit of asset type j (denoted as iKj,t) be defined

as 1 + iKj,t ≡
PK
j,t

PK
j,t−1

and the period t depletion rate of asset type j. Applying these to the

definition of the end of period t user cost value of asset type j, yields Eq. 4.6.

uKj,t ≡ PK
j,t−1[r − iKj,t + (1 + iKj,t)δ

K
j,t]Sj,t−1 (4.6)

The user cost method faces several challenges, most notably to form the expected values

for δKj,t and iKj,t in an unambiguous manner, and also the sensitivity of the user cost

estimates to the choices of these parameters.5

4The PIM is used to transform all capital assets of different vintages into equivalent efficiency units,
and then add them into an estimate of the productive capital stock. A more detailed description of the
capital stock method is provided by the ABS (2016b, Chapter 14).

5This is especially important when user cost estimates become negative.
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4.4.4 Land input

In the traditional productivity model, land is generally recorded as a non-depreciable

asset. Therefore, land capital services is simply a volume measure that is constructed by

dividing the nominal value of land by an appropriate price deflator.

Value of land

We used estimates of nominal value of land from the ABS release of the Australian System

of National Accounts (ASNA)(ABS 2017a). The definition of land in the ASNA concerns

the ground itself, including the soil covering and any associated surface water (UN et

al. 2009, para. 10.121). One challenge with this approach is that it is often hard to

disentangle the land beneath structures.6

The estimates of land in the ASNA is based on data from the Commonwealth Grants

Commission, which consists of agreed valuations presented for each state and territory by

the respective government’s Valuer-General. The estimates represent the approximated

site value of land and are separated according to land purpose. The value of land

is categorise by use: rural, residential and commercial.7 It does not include any

environmental properties or the monetary value has been assigned to the environmental

value over and above the economic value of land.

Constant-quality land price indexes

To account for changes in land quality for effects such as land degradation, deforestation,

land improvement and exogenous factors (such as climate and rainfall), a set of

constant-quality land price indexes were constructed. Hedonic pricing models enable

the price of land to be revalued based on a set of characteristics related to its use for

agricultural production and factors such as location (Ball et al. 1997).

6For example, see work by Diewert & Shimizu (2013)
7The ABS publish annual data on quantities and values of the stocks of key natural resources. For

further information, see the National Balance Sheets for Australia: Issues and Experimental Estimates,
1989 to 1992 (Cat. No. 5241.0).
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The literature does not state a set functional form for the hedonic equation, which is

generally determined empirically. The semi-logarithmic functional form seems to be

adequate.8. Here, the model is an ordinary least squares model that contains the locational

variable defined by the ABS statistical area code. The spatial hedonic model9 can be

expressed as Eq. 4.7,

y = α +Xβ +Dγ + ε (4.7)

where y is a F x 1 vector of log-price, X is a F x B matrix of land characteristics, D is a

F x (C − 1) matrix of time (period) dummy variables and ε is a random error term. The

parameters to be derived are B x 1 vector of characteristic shadow prices, β, and (C − 1)

x 1 vector of time (period) dummy shadow prices, γ.

Common concerns with these hedonic models are multicollinearity, heteroskedasticity and

omitted variables bias. De Haan (2016) has shown that multicollinearity is not a big issue

when estimating time-dummy indexes, as the interest is in the predicted prices rather than

the estimated characteristics parameters. The omitted variables in hedonic regressions can

lead to bias in the resulting price indexes.

The dependent variables included in the model are the same as those shown in Table

3.2 for Model 2. Some aspects of land degradation10 are captured through sufficient

differentiation of the land characteristics.

This study used a unique dataset containing a census of farm-level sales records for

Australian constant-quality spatial hedonic pricing indexes. Land price data was sourced

from sales data compiled by CoreLogic. Geospatial mapping undertaken by ABARES,

was based on location coordinates and used to overlay environmental attributes of the

land.

8See Hardle et al. (2004) for an overview of semi-parametric models, their properties and estimation.
9The model using a simple regional indicator was selected, as the results in Chapter 3 show that while

location is an essential driver of agricultural land values, a suitable regional indicator over geospatial
splines is just as valid.

10Degradation ‘considers changes in the capacity of environmental assets to deliver a broad range of
ecosystem services . . . and the extent to which this capacity may be reduced through the action of
economic units’ (UN et al. 2014, para. 5.90). Thus, degradation is a broader concept than depletion,
and is more complicated to measure. See Appendix C.1.
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Land Volume

The volume measure of land applied by in ABS MFP estimates is constant over time, that

is, land has zero volume growth. This assumption implies that in volume terms, the effects

of land degradation, deforestation, reforestation or land improvements and rural–urban

rezoning net to zero. A question that arises is the sensibility of maintaining no volume

change. While the land area in hectares of a country changes minimally over time, land

volume can vary due to quality changes from natural processes or economic activity. A

volume measure reveals ‘changes in the quantities of a specified set of goods or services

between two periods of time’. Volume measures differ from a strictly physical quantity in

that they are ‘adjusted to reflect changes in quality’ (UN et al. 2009, para. 15.13).

In economic analysis, physically identical products are considered to be of differing quality

if they are present in different locations or time periods. Thus, an asset, such as land, could

experience quality changes without undergoing physical improvements (such as roads and

utilities). According to the 2008 SNA:

It is generally assumed in economic analysis that whenever a difference in price is

found between two goods and services that appear to be physically identical there

must be some other factor, such as location, timing or conditions of sale, that is

introducing a difference in quality (UN et al. 2009, para. 15.67).

A good example is the event of agricultural land being rezoned to urban land could

be considered a change in the quality and, consequently, a change in the volume of

agricultural land. This quality change is likely embodied in the value of the land.

In this study, the volume measure of land is constructed by dividing the nominal value of

land by the constant-quality price index.

Land capital services

Land capital services is derived as the productive land stock multiplied by a rental price

(or user cost of natural capital). The land stock is defined as the volume of agricultural

land operated by a farmer.

Let j represent land, the nominal rate of return rj,t equals the ABS endogenous rate of
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return for the agriculture sector. The nominal rate of return embodies the expected rate

of return within an industry. The ABS calculates an ‘endogenous’ rate of return, which

assumes that the return of capital services exhausted gross operating surplus (GOS). Also

similar to the ABS model, the rate of economic depreciation δKj,t is 0. One differentiation

is that a constant-quality price index replaces price change PK
t . Importantly, these price

changes are used to represent the capital gains τKj,t where τKj,t ≡ PK
j,t − PK

j,t−1 = iKj,tP
K
j,t−1.

Without depreciation (that is δ = 0) this user cost equation implies that the owner of the

capital has paid a ‘rental price’ that comprises an expected rate of return and any capital

gains attributable to capital.

4.4.5 Agricultural MFP by State

The method used to produce state agricultural MFP aligns with the ABS methodology.

State GVA and capital stock are sourced from ABS State Accounts (ABS 2019), and

labour inputs were sourced from the ABS (2017b) quarterly Labour Force Survey. One

key challenge of producing state dimension MFP is the availability of appropriate data at

this level. To overcome this challenge the following assumptions were adopted:11

• Stock of inventories is allocated to states using state current price GVA proportions.

• State gross-mixed income is estimated using this income proportion in GOS and

mixed income at the national level.

• State capital stock utilises the same price deflators, mean asset lives, retirement

distributions, age-efficiency functions and age-price functions as those used for

national-level capital stock. The exception is land, where constant-quality price

indexes by state were applied.

• Rental prices by state and by sector adopt the national industry asset rental prices,

with the exception of land. This method assumes there is no variation in rental

price between states for all assets excluding land. For example, the rental price of

machinery and equipment is assumed to be the same across all states and territories.

11While these assumptions are not ideal, in practice, the difficulty around data availability made them
necessary. The ABS (2018) have tested the robustness of state MFP estimates to these assumptions.
They found that, in general, state MFP was relatively robust to the various choices.
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While this assumption does not account for variations in rental prices between states,

variations in rental prices between industries are captured.

4.5 Results

This section presents the estimates of agricultural sector productivity adjusted for land

quality. In producing the productivity estimates, we followed the same methodology

as the ABS - but this was modified when estimating productive capital stock and the

rental price for agricultural land. The modification, which utilised constant-quality price

indexes, allows for consideration of land quality.

4.5.1 Land capital services

The proportions in which businesses combine the various forms of capital (both natural

and produced) imply some capital structure, resulting from the specific investment mix.

While the investment mix and capital structure are likely to vary between individual

farms, it is useful to compare the overall levels of productive capital stock. Of particular

interest is the contribution of land capital services, which remained constant over the

period according to the ABS.

Table 4.1 shows the contribution of PKS assets to the agriculture sector. The flat trend

in the volume index of land is immediately visible. Despite the ongoing and intensive

use of agricultural land, the overall volume has not changed. The ABS measure does

not convey a plausible picture of land volume and does not account for any changes in

quality. When the quality of land is considered, the average annual growth of land PKS

is 4.5 per cent compared to the no-growth assumption. Linked to an earlier discussion

on the choice of prices, it is highly likely that there is a difference in price for different

production purposes. Therefore, different types of land use should be treated as separate

assets with varying prices of land. Further, if price divergence reflects land-use potential,

it may also be relevant to capture zoning developments.

Two elements influence the contribution of an asset to the overall index: First is the

asset share, and second is the rate by which the assets grow or deplete. Figure 4.1
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Table 4.1 – Productive capital stock (asset level)

Share of PKS Average growth per
1995-1996 2017-2018 year, (%)

Computer software 0.0 0.0 2.0
Inventories (farm) 0.9 1.6 2.7
Land 77.0 73.0 0.0
Livestock 5.9 2.4 -3.5
Orchards, plantations and vineyards 0.9 1.8 3.3
Computers 0.0 0.0 16.9
Electrical and electronic equipment 0.1 0.3 6.4
Industrial machinery and equipment 3.4 4.9 1.8
Research and development 0.0 0.2 8.1
Road vehicles 1.8 2.9 2.3
Other transport equipment 0.1 0.2 3.0
Other plant and equipment 0.5 0.8 2.6
Non-dwelling construction 8.5 11.3 1.4
Ownership transfer costs 0.9 0.6 -1.7
Land - adjusted for quality(1) 54.6 73.0 4.5
Source: ABS Estimates of Industry Multifactor Productivity (2020) and author’s estimate
Note: (1) This is the land productive capital stock measure which has been adjusted using
constant-quality land indexes.

shows constant-quality price indexes and the high-level asset weights for land within the

agriculture sector by state. The effect of the constant-quality land price indexes is reflected

in the weight assigned to land. The asset weights highlight the implausibility that the

largest asset of a farm provides zero capital services to the production process over time.

Some factors that have driven the increase in land values over the last decade include a rise

in operating profits from farmers and a continuing demand for agricultural land expansion.

Macro-economic factors like a falling Australian dollar and RBA cash rates at low levels

have encouraged agricultural land purchases and improved export competitiveness (Lefroy

2019). Commodities such as wool, beef and sheep have been trading at highly profitable

prices, which directly link into operating profits (Cunningham & Smith 2019).

4.5.2 Agricultural MFP

Productivity is an important measure of Australian agricultural performance. Growth

in the ratio of outputs produced to inputs used translates to improved profitability and

competitiveness for farmers. Previous Australian studies have concluded that productivity

growth contributed to over two-thirds of the growth in farm output with most of the

growth in farm profits being recorded over the postwar period (Mullen 2010; Productivity
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Figure 4.1 – State level constant-quality price indexes and land PKS asset weight

Commission 2011). Since the late 1970s, there has been a noticeable reduction in public

investment in agricultural R&D (Sheng et al. 2010). Another contributing factor could

be that technology advances and market reforms in the 1980s and 1990s have produced

productivity gains that are not currently being replicated.

Figure 4.2 shows the annual growth in MFP and input and output growth over the period

1977–1978 to 2017–2018. The average annual MFP growth over this period was 1.0 per

cent. Throughout the 1990s, strong growth in outputs led to higher demand for inputs.

As a consequence, in that decade, gross input grew at 1.5 per cent annually. From the

early 2000s onwards, growth in input prices led to declining input use (at –0.8 per cent a

year) resulting in a compositional shift in the inputs over time.

Using the national accounts data and other data sources, we analysed agriculture

productivity from 1994–1995 to 2017–2018 and adjusted MFP by using a measure of

land quality, as described in Section 4.3.

Figure 4.3 compares the official ABS agricultural MFP to two measure of adjusted

MFP. The first measure is adjusted MFP using simple median price indexes (not

adjusted for quality). The second measure is adjusted MFP using constant-quality

price indexes. In addition, the second measure of adjusted MFP is calculated using

a ‘top-down’ method as well as a ‘bottom-up’ method. In the top-down method, the

constant-quality land index was derived at the national level. Notably, a characteristic
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Figure 4.2 – MFP for broadacre industries

Source: ABARES Australian Agricultural Productivity (ABARES 2021)

of the national level constant-quality land index is that it exhibits less volatility than

state level constant-quality land indexes. One reason for this is that the output of the

agricultural industry is highly affected by the weather, in the same period one state’s

agricultural industry could be affected by drought, while other state could be experiencing

bumper crops. At the national level, the growth in the constant-quality price index is

more stable from year to year.

The bottom-up series is constructed, using the domar aggregation approach. This

approach constructs the growth rate of an aggregated Australian MFP, as a weighted

average of the growth rates of the state level MFP.12 The weights for each state when

adding their MFPs together is the ratio of the real value of each state’s output (gross

value added) to the total Australian output. The reason why the bottom-up series differ

significantly from the Adjusted and Median MFP series is due to the extreme volatility

of the state constant-quality land price indexes compared the national aggregate constant

quality land price index.

Figure 4.3 shows that agricultural MFP in Australia grew on average by 2.0 per cent a

12To aggregate to national level unadjusted agricultural MFP for Australian Capital Territory and the
Northern Territory were included
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year between 1998–1999 and 2017–2018. Productivity growth in this sector has mainly

been due to technological progress and changes in the mix of outputs and inputs of farms

and resource reallocation. Agricultural productivity is sensitive to the effects of climate,

with productivity falling in both 2016–2017 and 2017–2018 primarily due to widespread

drought across much of eastern Australia. The fall in unadjusted MFP from 2000–2001 to

2010–2011 was 0.3 per cent. MFP growth fell further between 1999–2000 and 2009–2010

with a rebound between 2010–2011 and 2013–2014. The slowdown in productivity during

these periods and in recent years is mainly attributed to severe drought.

Figure 4.3 – Australian agricultural MFP comparison

Source: ABS Estimates of Multifactor Productivity (ABS 2020) and author’s estimates

The unadjusted MFP for Australia grew at a rate of 0.2 per cent a year over the same

period. While the effect at the national level based on the top-down approach is small, as

shown in Figure 4.3, the result using the bottom-up approach is more dramatic. Adjusted

agricultural MFP under the bottom-up approach is 1.3 percentage points lower on average

over the period.

Table 4.2 displays the contribution of agricultural GVA to the total state GVA. Strikingly,

the agriculture sector, while only contributing 1.8 per cent to total GVA in New South

Wales, contributed around 11.3 per cent in Tasmania and 5.8 per cent in South Australia.

Figures 4.4 and 4.5 compare the MFP for the agriculture sector at the state level. There

were some significant differences between states for the adjusted agricultural MFP at

state level when land price is measured using the median price indexes. Interestingly,
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Table 4.2 – Percentage contribution of sector GVA (chain volume measure) by
state, 2018-2019

NSW Vic Qld SA WA Tas
Agriculture, forestry and fishing 1.79 2.14 2.76 5.78 2.55 11.25
Mining 3.62 1.38 14.09 3.55 35.92 4.07
Manufacturing 6.11 8.07 6.81 7.18 5.49 6.99
Electricity, gas, water and waste services 2.43 3.26 3.60 4.34 1.94 3.62
Construction 8.82 9.18 8.64 8.48 7.04 7.79
Wholesale trade 4.79 5.05 4.12 5.19 3.66 3.49
Retail trade 4.99 5.60 4.88 5.74 3.44 5.32
Accommodation and food services 3.05 2.38 3.01 2.94 1.86 2.95
Transport, postal and warehousing 5.79 5.39 5.91 4.72 4.46 4.63
Information media and telecommunications 3.80 3.58 1.63 2.46 1.20 4.07
Financial and insurance services 14.13 12.61 6.92 8.98 4.92 6.56
Rental, hiring and real estate services 4.58 3.35 3.29 2.82 2.19 2.06
Professional, scientific and technical services 9.97 9.19 6.65 5.85 5.90 3.47
Administrative and support services 4.80 4.50 3.94 3.29 2.48 2.09
Public administration and safety 5.34 5.30 6.05 6.55 4.41 6.68
Education and training 5.43 6.16 5.62 6.92 3.97 7.23
Health care and social assistance 7.50 9.44 8.83 11.86 6.18 14.53
Arts and recreation services 0.99 1.34 0.91 0.76 0.56 1.28
Other services 2.09 2.09 2.34 2.57 1.84 1.92
Source: ABS, Australian National Accounts: State Accounts, 2018-2019 (ABS 2018)

the adjusted productivity profile that included the constant-quality price indexes is not

significantly different for most states, except for South Australia and New South Wales.

This highlights that the assumption of zero volume growth in the ABS method is flawed

and can present a misleading view of agricultural productivity. This is particularly

pronounced for Tasmania and South Australia, where the value-added contribution of

agriculture in those states is much higher.

Tasmania recorded the highest annual growth rate in MFP of 4.9 per cent and Victoria

recorded the second highest of 4.1 per cent annually. Victoria’s record growth rates were

driven by family farm consolidation and corporate entry, particularly in the western region.

In northern Victoria, numerous family operations continue to seek land for expansion,

while in north central Victoria lifestyle influence is adding to demand (Rural Bank 2016).

In contrast, the annual growth rate over the last decade in Western Australia was only

0.7 per cent and Queensland even lower at 0.3 per cent. Part of this difference was due

to the ‘intensity of production’, being in drier regions. There seems to be a premium on

agricultural land that experiences steady rainfall.

When a constant-quality price index measure was applied, the effect on the state
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Figure 4.4 – State level MFP comparison (NSW, Victoria and Queensland)

Note: The ‘ABS’ agricultural state level MFP estimates are based on ABS
estimates of Industry MFP (ABS 2018) and author’s calculations.
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Figure 4.5 – State level MFP comparison (SA, WA and Tasmania)

Note: The ‘ABS’ agricultural state level MFP estimates are based on ABS
estimates of Industry MFP (ABS 2018) and author’s calculations.
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agricultural sector can be observed with a downward adjustment to MFP, particularly

from around 2006 onwards. The smaller weight on land at the start of the series is

distributed across other asset types, as the weights sum to unity. Assets with higher

rental prices have a more substantial influence on the estimates. At the state level, the

impact is substantial, lowering agricultural MFP growth by between 1.2 to 3.6 percentage

points per year.

4.6 Conclusion

This chapter used the value-added model to estimate aggregate output, input and MFP

for Australia’s agriculture sector. Several key messages emerged from this chapter. First,

the measurement of land values can be improved at the national level by accounting

for changes in land quality. Second, it is feasible to construct standard volume and

price indexes using spatial hedonic pricing models. These price indexes can be used to

extend official estimates of MFP to factor in the contribution of agricultural land. In

volume terms for land, this will equal the current price of land divided by an appropriate

constant-quality deflator. Third, the chapter showed that it is straightforward to include

constant-quality price indexes in measures of the capital services of agricultural land.

The choice of price deflator used to derive a volume measure, and the user cost of land can

have a marked effect on the resulting productivity picture of the agriculture sector. An

analysis of the various land price deflator options indicates that applying constant-quality

price indexes provides more plausible estimates in the Australian context. The adjusted

agricultural sector productivity estimates give a better representation of the underlying

sustainability of current productivity growth, as factors such as land degradation are

included. The price of land should reflect all the attributes unique to the property.

Thus, they provide a more realistic representation of changes in the agriculture sector’s

production functions.

The literature shows that agricultural MFP growth has slowed over the past decade

(Sheng et al. 2010). When land quality is accounted for, this slowdown is more

pronounced. The adjustment to aggregate productivity growth for Australia’s agriculture

sector between 1995–96 and 2017–18 is relatively large, potentially detracting from growth

by 1.3 percentage points per year. The impact is more significant at the state level,
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lowering growth by between 1.2 and 3.6 percentage points per year.

Although the estimates presented in this chapter have been derived using the best available

methods, some limitations should be noted. In particular, the absence of some necessary

data prevents significant adjustments for differences in the quality of some intermediate

inputs such as crop chemicals, medicines and seed. In general, this limitation will tend to

bias estimates of productivity upwards.
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Chapter 5

Conclusions

5.1 Research Questions

This thesis responds to the following research questions: How to account for natural capital

depletion? Will a failure to account for this depletion be a risk to the future wellbeing

(increase in material standards of living) of Australians? To answer these questions, this

thesis explicitly values natural capital, and its service flows in the context of productivity

analysis. The secondary research questions are: What are the economic consequences

of the extraction and depletion of subsoil assets on potential productivity growth for

the Australian mining sector? What are the effects on productivity of the Australian

agricultural sector over time from accounting for the land quality? The common thread

running through these research questions is how to include natural capital in economic

measures of productivity.

5.2 Contributions

This thesis responds to several fundamental measurement issues which arise when valuing

natural capital services for the explicit inclusion of natural resources in productivity

measures. In doing so, this thesis reduces the indivisibility between the economy and

natural capital, by better accounting for the connection between them. These enhanced

productivity measures are of particular interest to economists and policymakers because
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of their implications for improved living standards and long-term economic growth. For

example, productivity growth plays a crucial role in maintaining both international

competitiveness in an environment of climate variability and constraints on the use of

natural capital. The key contributions of this thesis are summarised as follows:

Chapter 2 advances measurement frameworks for natural capital to support

economic-environment accounting and productivity. It is the first study to compare the

application of three different methods for estimating natural capital user cost values in the

context of productivity analysis, hence providing insight into each method’s plausibility

and the issues involved in their implementation. The first is the unit resource rent method

suggested by Brandt et al. (2017). The second is the residual value method recommended

by SEEA 2012 (UN et al. 2014a). Diewert and Fox (2016a) proposed the third method.

Comparison of the methods reveals that user cost values derived from the unit

resource rent method are rarely negative, are less volatile and provide a more realistic

representation of production functions over time. The residual value method produced

implausible estimates for natural capital with often repeated 0 values, and the estimates

of the traditional user costs method were sensitive to the choice of parameters. Overall,

the unit resource rent method seemed to outperform the other two techniques. The results

also showed that while the different approaches yielded different MFP estimates, the most

influential adjustment to traditional productivity measures was the inclusion of natural

capital. This generated substantial productivity gains for the Australian mining sector,

where natural capital added at least 1.0 per cent growth to annual productivity between

1995–1996 and 2015–2016.

Chapter 3 calculates the contributions of spatial and environmental attributes to rural

land values using a real estate sales record. The chapter, inspired by Hill and Scholz

(2017), directly applies spatial coordinate information to allow more flexible modelling of

location parameters using spline functions. These spatial hedonic models were estimated

over time and at both national and regional levels. The main contribution is to provide,

for the first time, a dynamic portrait of the past 40 years of Australian agricultural land

values accounting for land quality. In addition, it explores the appropriateness of using a

time-dummy method or a hedonic imputation method as the index-construction method

for agricultural land. Both methods correct price changes for differing land quality and

allow the indexes to account for unmatched farms between consecutive periods. While
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results were generally insensitive across hedonic models and index-construction methods,

a few clear findings emerged following analysis. Accounting for land quality revises the

cumulative price change of agricultural land in Australia, downwards by around 140 per

cent over the selected study period. These results highlight the importance of using

semi-parametric regression models, as many covariates interact with land prices in a

non-linear way. By explicitly modelling and presenting the spatial results visually, the

chapter also provides insight into the spatial structure of Australian agricultural land

values.

Chapter 4 highlights the importance of accounting for land quality in order to improve

and maintain the productivity of Australia’s agriculture industries. Official ABS state

level MFP estimates for the agricultural sector were adjusted to account for changes in

land stock due to shifts in quality. The significance of this study lies in the novelty

of explicitly including quality-adjusted land price indexes in Australian productivity

estimates, not only at the national level but also at the state level. The results show that

the adjustment to aggregate productivity growth for Australia’s agriculture sector between

1995–1996 and 2017–2018 is relatively large, reducing growth by 1.3 percentage points per

year. The impact is more significant at the state level, lowering growth by between 1.2 to

3.6 percentage points per year. Overall, the results support policy interventions to raise

productivity growth in the agricultural sector, focusing on the appropriate incentives for

land management practices, given that lower-quality land reduces productivity growth.

In summary, the thesis highlights that it is undoubtedly possible for productivity growth

to improve the efficiency of natural capital. However, increases in economic growth would

likely lead to overall increases in the use of natural capital. In turn, this affects the natural

environment and the long-term capacity of the economy, which relies in many ways on

the use of natural capital.

The research presented in this chapter provides an original analysis of how adjusted

productivity measures can be of use to policymakers - distinct from information

already provided from economic estimates such as GDP and environmental accounts.

These additional measures provide information on the unmeasured effects of changing

quantities and qualities of natural capital. Thus, the outcomes may be used to improve

decision-making in several ways, including a broader public policy agenda item used by

the government to target more efficient uses of natural capital in Australia.
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The thesis also informs policymakers on fundamental issues such as changes in

intergenerational equity and income distributions resulting from potentially irreversible

environmental change. Unsustainable developments have the potential to affect long-term

economic outcomes and can lead to inaccurate national budget forecasts, as well as

inappropriate industry support and taxation policies.

5.3 Recommendations for Future Research

Chapter 2 developed valuation techniques for non-renewable resources required for

national accounting and compared different user cost approaches for considering subsoil

assets in productivity statistics of the mining sector. An extension of this work is to

apply the techniques to other sectors and a broader class of environmental assets, such as

renewable resources and ecosystem services. This would allow for estimates of depletion

for a range of renewable resources that conform for inclusion in a traditional user cost

framework. While estimates for a range of these resources exist, there remain numerous

issues of practical concerns. For example, measuring the depletion of renewable resources

(such as fish stocks) relies on bio-economic modelling, but accounting for intertemporal

stock changes would require further research.

Another area for future research is to develop analytical frameworks that extend

the System of Economic and Environmental Accounts Central Framework for valuing

renewable resources and their depletion. Given the importance of renewable resources

such as forests for biodiversity, climate stability and soil integrity, the social value of

living trees should be much higher than the market price of the produced wood. Hence,

accounting for the contribution of renewable resources to economic growth is associated

with significant uncertainties, such as lack of appropriate data and difficulties in setting

the price of wood. The prices in the user cost model from logging, for example, do not

reflect the total social cost of using renewable resources or its depletion profile.

A potential extension of Chapter 3 would be to include the exploration of other

non-parametric hedonic models. Obtaining sufficiently detailed data to explain individual

property values is very challenging, and there could be omitted variable bias. Thus,

additional farm characteristics from other survey data or taxation data could make the

analysis more robust. Further linking of spatial administration datasets, for example,
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linking land sales’ data with the Australian Bureau of Agricultural and Resources

Economics and Science (ABARES) farm survey and CSIRO Soil and Landscape Grid

of Australia, may yield different interpretations of the constituent components. It would

also be helpful to extend research on the relationship between land values and alternative

uses of land. This is because the Australian agricultural land market is not transparent,

and information about the market is often difficult to obtain. Another extension would be

to incorporate essential ecosystem services relevant to agriculture such as soil nutrients,

water and grass for livestock, and pollination to develop a complete productivity model

to understand agricultural production sources better. To conclude, the exclusion of

natural capital in productivity measures is an enduring measurement gap that needs

to be addressed. Research to date, including the results from this thesis, strongly

suggests that failure to account for the depletion of natural capital distorts productivity

estimates as measured under the traditional growth accounting framework. The increasing

availability of administrative spatial data on natural capital will provide an essential tool

for researchers and statisticians to resolve (or come to a consensus) how best to measure

and account for the price and quantity of natural capital in productivity analysis.

111



112



Appendix A

Appendix for Chapter 2

A.1 Endogenous Rates of Return

The user cost of capital could be considered as a market rental price for the asset.

As the capital rental markets are almost non-existent, the user cost is most commonly

approximated as an implicit rent that owners of capital are considered to be charging

themselves. For a given industry, the ABS (2016b) use the following unit user cost (Eq.

A.1) for the produced capital of asset j in period t:

uKj,t = ηj,t(rtP
K
j,t−1 + δKj,tP

K
j,t − τKj,t) + µtP

K
j,t−1 (A.1)

where ηj,t is the income tax parameter of asset j, rt is the nominal rate of return, PK
j,t−1 is

the price of capital asset j at the beginning of period t, δKj,t is the economic depreciation

rate of asset j, PK
j,t is the price of capital asset j at the end of period t, τKj,t is the capital

gain effect due to the revaluation of asset j and µt is the average non-income tax rate

on production. The nominal rate of return, in Eq. A.1, rt represents the rate of return

that is expected within a given industry. An endogenous rate of return is derived for all

assets in a given industry by equating the entire gross operating surplus (GOS) of the

given industry, GOSt, to the rental price (unit user cost), multiplied by the quantity of

produced capital services used in production, Kj,t. This is expressed in Eq. A.2,
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GOSt =
∑
j

uKj,tKj,t (A.2)

Substituting Eq. A.1 in Eq. A.2 and rearranging to solve for the rate of return gives Eq.

A.3.

rt =
GOSt −

∑
j Kj,t(ηj,t(δ

K
j,tP

K
j,t − τKj,t) + µtP

K
j,t−1)∑

j Kj,tηj,tPK
j,t−1

(A.3)

When natural capital is included, it is assumed that Eq. A.4 holds.

GOSt =
∑
j

uKj,tKj,t +
∑
m

UCV N
m,t (A.4)

where UCV N
m,t is the end of period t user cost value of asset type m of natural capital.

To solve for the rate of return, the user cost value derived by the traditional user cost

method (Diewert and Fox 2016a) is used. This is expressed as Eq. A.5.

UCV N
m,t = PN

m,t−1[r − iNm,t + (1 + iNm,t)δ
N
m,t]NCSm,t−1

= (rPN
m,t−1 + δNm,tP

N
m,t − iNm,tP

N
m,t−1)NCSm,t−1

= (rPN
m,t−1 + δNm,tP

N
m,t − τNm,t)NCSm,t−1

(A.5)

Note that UCV N
m,t has the form of traditional user cost value of capital, but it is not the

same. In particular, while for produced capital the user cost value equals the unit user

cost multiplied by Kj,t (the ‘quantity’ of produced capital services used in production),

for natural capital we do not have a ‘unit user cost’ per se; rather, the user cost value

equals (rPN
m,t−1 + δNm,tP

N
m,t − τNm,t) multiplied by NCSm,t−1, where the latter is the stock

level of natural capital services at the beginning of the period. To derive a unit user cost

for natural capital, we need to divide the expression for the user cost value by depletion

(Dm,t).

Substituting Diewert and Fox’s (2016a) user cost value for natural capital in the GOS

equation and solving for the rate of return yields Eq. A.6.
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rt =
GOSt −

∑
j Kj,t(ηj,t(δ

K
j,tP

K
j,t − τKj,t) + µtP

K
j,t−1) −

∑
m(δNm,tP

N
m,t − τNm,t)NCSm,t−1∑

j Kj,tηj,tPK
j,t−1 +

∑
m P

N
m,t−1NCSm,t−1

(A.6)

This method has a degree of intuitive appeal, as all the observed capital assets are utilised

to generate capital income, hence, treating the user cost of capital as marginal revenue.

A.2 Sensitivity Analysis of the Traditional User Cost

Method

Given that the user cost is so dependent on the assumptions in the model, a sensitivity

analysis was conducted. Table A.1 presents 16 models that were used to assess the

sensitivity of the traditional user cost method, based on different combinations of

assumptions for the choice of parameters. The table examines the effects of using an

exogenous versus an endogenous rate of return, as well as the effect of smoothing the

inflation rate or dropping the capital gains term altogether. The results of the sensitivity

analysis are shown in Table A.2.

The sensitivity analysis shows that the choice of parameters within the traditional

user cost method matters. Interestingly, whether the capital gains term is included or

excluded yields the most significant difference. When capital gains are excluded, there

is a considerable reduction in the number of negative user cost values for individual

subsoil assets compared with the other models. The results support the observation made

in MacGibbon (2010) that the exclusion of capital gains from the user cost of capital

could provide more plausible asset weights that display markedly less volatility. Another

tentative conclusion is that the use of an endogenous rate of return in the computation

of user costs produces a more substantial number of negative values compared with the

other models. According to the OECD (2009), the difference between GOS for market

producers, as defined in the national accounts, and GOS, as derived by the ex-ante

method, yields an expected result. The differences can change sign as they oscillate

around a long-run value near zero, suggesting that any divergence between the ex-post

and ex-ante value is a ‘surprise’ term.
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The differences between the 16 traditional user cost models are relatively large for the

mining sector, recording on average, one percentage point in annual growth over the

period. These results indicate how the selection of rates of return and a price deflator can

offer more reasonable user costs for natural capital. Interestingly, the major influencing

factor on the estimated cost shares of the unit resource rent and residual value methods

is the choice of the rate of return used in calculating the user cost of produced capital.

The exogenous rate of return greatly affects the magnitude of the cost shares allocated

to produced capital and natural capital. The choice of a traditional user cost model

could also imply materially different views on the pattern of productivity growth at the

individual subsoil asset level.

Table A.1 – Traditional user cost models

Natural capital Produced capital
Model rN iNm,t τNm,t rK

1 RBA business loan rate Price deflater Yes RBA cash rate
2 RBA business loan rate Exponential smoothingc Yes RBA cash rate
3 RBA business loan rate Geometric smoothingd Yes RBA cash rate
4 RBA business loan rate Price deflater No RBA cash rate

5 RBA cash rate Price deflater Yes RBA cash rate
6 RBA cash rate Exponential smoothing Yes RBA cash rate
7 RBA cash rate Geometric smoothing Yes RBA cash rate
8 RBA cash rate Price deflater No RBA cash rate

9 ABS endogenous ratea Price deflater Yes RBA cash rate
10 ABS endogenous rate Exponential smoothing Yes RBA cash rate
11 ABS endogenous rate Geometric smoothing Yes RBA cash rate
12 ABS endogenous rate Price deflater No RBA cash rate

13 K and N endo. rateb Price deflater Yes K and N endo. rate
14 K and N endo. rate Exponential smoothing Yes K and N endo. rate
15 K and N endo. rate Geometric smoothing Yes K and N endo. rate
16 K and N endo. rate Price deflater No K and N endo. rate
Notes: a This rate refers to the ABS endogenously derived rates of return for produced capital.
b Refers to the endogenous rates of return including both produced and natural capital.
c Exponential smoothing over five periods, using dampening factor of 0.9.
d Based on Diewert and Fox’s (2016a, p. 20) method.
Source: Estimates of industry MFP (ABS 2018); Australian System of National Accounts
(ABS 2017a); RBA (2020a, Table F5) indicator lending rates.
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Table A.2 – Comparison of traditional user cost models MFP growth rates

Average MFP growth rates (%)

Period ABS Model 1 Model 2 Model 3 Model 4

1995/96 - 2000/01 1.4 1.8 1.9 1.8 1.8
2001/02 - 2005-06 -4.4 -3.7 -3.3 -3.3 -2.4
2006/07 - 2010/11 -4.1 -2.3 -1.9 -1.9 -0.7
2011/12 - 2015/16 2.4 1.8 1.1 1.5 1.9
1995/96 - 2015/16 -1.6 -0.5 -0.4 -0.2 0.2

Period Model 5 Model 6 Model 7 Model 8

1995/96 - 2000/01 n/a 1.8 1.9 1.9 1.8
2001/02 - 2005-06 n/a -3.9 -3.4 -3.3 -2.6
2006/07 - 2010/11 n/a -2.5 -2.1 -1.2 -0.9
2011/12 - 2015/16 n/a 1.7 1.0 1.3 1.7
1995/96 - 2015/16 n/a -0.6 -0.5 -0.2 0.1

Period Model 9 Model 10 Model 11 Model 12

1995/96 - 2000/01 n/a 1.8 1.9 1.8 1.9
2001/02 - 2005-06 n/a -3.6 -3.2 -3.1 -2.4
2006/07 - 2010/11 n/a -1.8 -1.3 -0.5 -0.2
2011/12 - 2015/16 n/a 1.9 1.0 1.4 2.1
1995/96 - 2015/16 n/a -0.3 -0.3 0.0 0.4

Period Model 13 Model 14 Model 15 Model 16

1995/96 - 2000/01 n/a 2.1 2.3 2.1 2.3
2001/02 - 2005-06 n/a -3.8 -3.3 -3.6 -2.5
2006/07 - 2010/11 n/a -2.3 -1.7 -1.5 -0.1
2011/12 - 2015/16 n/a 1.2 0.5 0.3 2.6
1995/96 - 2015/16 n/a -0.6 -0.4 -0.6 0.7
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Appendix B

Appendix for Chapter 3

B.1 The Data

Table B.1 – Constructed variables

Constructed identifier Cl_primary land use equals:

Cropping “Crop”, “Cropping”, "Crops", "Grain", "Grains", "Cereals"
Livestock "Cattle", "Pastoral", "Sheep", "Beef", "Livestock", "Grazing",

"Wool", "Pigs", "Poultry", "CAMEL", "Mutton", "Goats"
Mix "Mix", "Mixed", "Cereals and Sheep", "Cereals and Cattle"
Dairy "Dairy", "Milk", "Cream"
Vineyard "Vines", "Vineyard", "Vineyards", "Vinyard", "Vinyards"
Sugar "Sugar"
Lifestyle "Lifestyle", "House", "Housesite", "Dwelling", "Residential"
Horticulture "Orchards", "Vegetables", "Citrus", "Pineapples", "Fruits”, "Groves",

"Cotton", "Peanuts", "Pineapples", "Pome", "Almonds" "Berry"
Irrigated "Small Crops and Fodder - Irrigated", "Vines - Irrigated", "Citrus - Irrigated",

"Vines and Others - Irrigated", "Farming-Dairy-Part Irrigated",
"Cattle-Dairy - Irrigated Pasture", "Farming-Dairy-Part Irrigated",
"Citrus and Others - Irrigated", "Vegetables - Irrigated",
"Stone Fruits - Irrigated", "Stone and Pome Fruits - Irrigated", "Cotton",
"Peanuts", "Pineapples", "Vegetables - Irrigated", "Almonds - Irrigated",
"Grazing/Pastoral-Part Irrigate", "Farming-Mixed-Part Irrigated"
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Table B.2 – CoreLogic data variables

Data field Definition

Property ID Unique record key for the property.
Real Property Description The legal parcel(s) description of the property, depending on

the scheme adopted for each state.
Lot Number Lot Number component of the parcel’s description.

NSW, Vic, QLd, WA, SA, Tas, NT only
Full Property Address Property Address
Property Type CoreLogic identified category for the property such as

House, Unit, Flats, Land, Business (that is, House, Unit, Flats,
Business, Commercial, Community, Farm, Land, Storage Unit)

Property Type Minor Corelogic minor category for properties such as
Cattle Dairy, General, Grain and Other Crops, Hobby,
Horticulture/Fruit Growing, Other Livestock,Poultry, Sheep
Studio, Townhouse/Villa, Triplex

Primary Land Use The Primary Land Use of the property such as
single Unit Dwelling, House etc.

Latitude The geographical latitude of the property.
Longitude The geographical longitude of the property.
Bedrooms The most recently recorded bedrooms count.
Bathrooms The most recently recorded count of bathrooms for the property.
Land Area Total size of the parcel/s in square metres.
Transfer ID Unique record key within the core database for the transfer
Contract Date Contract date of transfer which indicates the date on

which the sale price was contractually committed between
a vendor and a purchaser.

Transaction Date Contract date for states were VG contract date is provided;
this include NSW, Vic, Qld, WA, Tas and ACT only

Contract Price A proxy Contract Date with Settlement Date substituted for
states where no VG Contract Date is provided.
Allows for ordering transfers by the time that the transfer occurred.

Multi Sale Sale price of transfer indicating the consideration
for the property changing ownership (if available)

Source: CoreLogic and Chancellor et al. (2019)
VG: Valuer-General
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B.2 Constant-quality indexes (State Level)

This Appendix documents the different constant quality price indexes for each of the six

states.

Table B.3 – NSW price indexes, 1986–1987 to 2017–2018

Financial Time Dummy Method Hedonic Imputation Method Sample
year ending model 1 model 2 model 3 model 4 model 1 model 2 model 3 model 4 mean median
Jun-1987 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Jun-1988 1.07 1.07 1.09 1.09 1.12 1.07 1.09 1.09 0.99 1.20
Jun-1989 1.17 1.16 1.19 1.20 1.32 1.30 1.27 1.27 1.35 1.38
Jun-1990 1.27 1.26 1.29 1.29 1.41 1.42 1.38 1.39 1.51 1.78
Jun-1991 1.42 1.44 1.47 1.49 1.49 1.54 1.48 1.52 1.62 1.90
Jun-1992 1.53 1.56 1.60 1.63 1.60 1.74 1.64 1.74 1.80 1.96
Jun-1993 1.66 1.69 1.74 1.81 1.63 1.79 1.68 1.80 1.93 2.11
Jun-1994 1.63 1.67 1.71 1.78 1.69 1.88 1.76 1.89 1.96 2.06
Jun-1995 1.75 1.78 1.83 1.90 1.78 1.99 1.86 2.00 2.09 2.25
Jun-1996 1.83 1.88 1.93 2.00 1.89 2.05 1.94 2.07 2.23 2.47
Jun-1997 1.93 1.96 2.02 2.10 1.95 2.13 2.01 2.16 2.43 2.72
Jun-1998 1.91 1.95 2.01 2.10 1.99 2.21 2.07 2.22 2.64 2.98
Jun-1999 2.01 2.05 2.12 2.20 2.10 2.33 2.16 2.31 2.58 3.04
Jun-2000 2.11 2.14 2.21 2.31 2.17 2.40 2.20 2.37 2.69 3.02
Jun-2001 2.12 2.15 2.21 2.29 2.23 2.48 2.30 2.47 2.87 3.33
Jun-2002 2.21 2.26 2.32 2.41 2.39 2.70 2.50 2.65 3.28 3.78
Jun-2003 2.48 2.55 2.60 2.68 2.68 3.06 2.82 3.02 3.65 4.13
Jun-2004 2.77 2.85 2.90 3.01 2.85 3.22 2.99 3.21 4.05 4.82
Jun-2005 2.84 2.92 3.02 3.14 2.98 3.33 3.11 3.33 4.26 5.07
Jun-2006 3.01 3.12 3.18 3.34 3.55 3.96 3.69 3.95 5.41 6.16
Jun-2007 4.14 4.26 4.38 4.51 4.22 4.73 4.44 4.72 5.41 6.09
Jun-2008 4.35 4.46 4.57 4.73 4.25 4.70 4.43 4.64 5.81 6.62
Jun-2009 4.17 4.25 4.36 4.52 4.16 4.63 4.35 4.59 5.74 6.58
Jun-2010 4.08 4.17 4.30 4.45 4.02 4.47 4.24 4.47 5.81 6.74
Jun-2011 3.91 3.97 4.10 4.28 3.60 4.01 3.87 4.08 6.55 7.41
Jun-2012 3.34 3.40 3.55 3.72 3.53 3.96 3.82 4.02 6.58 7.40
Jun-2013 3.61 3.70 3.82 3.99 3.71 4.20 3.94 3.87 6.22 7.09
Jun-2014 3.53 3.63 3.74 3.89 3.80 4.29 3.97 4.09 7.03 7.64
Jun-2015 3.66 3.78 3.89 4.04 3.86 4.39 4.05 4.21 7.03 7.26
Jun-2016 3.72 3.83 3.94 4.12 4.02 4.58 4.24 4.50 7.43 8.10
Jun-2017 4.01 4.13 4.28 4.46 4.29 4.87 4.56 4.87 7.70 8.47
Jun-2018 4.22 4.34 4.49 4.68 4.56 5.20 4.84 5.12 6.76 8.38
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Table B.4 – Victoria price indexes, 1975–1976 to 2017–2018

Financial Time Dummy Method Hedonic Imputation Method Sample
year ending model 1 model 2 model 3 model 4 model 1 model 2 model 3 model 4 mean median
Jun-1976 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Jun-1977 1.08 1.07 1.07 1.11 1.20 1.08 1.09 0.99 0.98 1.05
Jun-1978 1.22 1.15 1.16 1.24 1.21 1.12 1.13 1.03 1.18 1.06
Jun-1979 1.08 1.08 1.10 1.18 1.10 1.06 1.11 1.03 1.12 1.09
Jun-1980 1.12 1.14 1.17 1.24 1.18 1.15 1.18 1.07 1.43 1.38
Jun-1981 1.27 1.26 1.27 1.35 1.30 1.26 1.30 1.18 1.58 1.60
Jun-1982 1.42 1.45 1.47 1.52 1.47 1.41 1.46 1.33 1.86 1.82
Jun-1983 1.64 1.62 1.64 1.68 1.65 1.59 1.62 1.47 1.96 1.93
Jun-1984 1.75 1.71 1.74 1.80 1.73 1.71 1.75 1.61 2.04 1.99
Jun-1985 1.78 1.83 1.87 1.96 1.86 1.87 1.90 1.73 2.11 2.10
Jun-1986 2.02 2.04 2.09 2.25 1.90 2.05 1.91 1.68 1.53 1.48
Jun-1987 1.85 1.88 1.90 1.96 1.86 2.05 1.84 1.62 1.16 1.68
Jun-1988 2.01 1.99 2.03 2.18 2.16 2.31 2.21 1.96 1.97 1.99
Jun-1989 2.57 2.66 2.74 2.76 2.84 3.02 2.56 2.69 3.30 3.05
Jun-1990 3.04 3.19 3.32 3.32 3.12 3.40 2.88 2.99 3.39 3.46
Jun-1991 3.09 3.28 3.38 3.41 3.19 3.45 2.91 2.95 3.33 3.20
Jun-1992 3.11 3.27 3.36 3.42 3.21 3.46 2.89 2.90 3.51 3.16
Jun-1993 3.05 3.26 3.35 3.48 3.11 3.43 2.89 2.92 4.04 3.57
Jun-1994 3.02 3.29 3.38 3.51 3.20 3.45 2.90 2.92 3.86 3.52
Jun-1995 3.23 3.33 3.40 3.51 3.49 3.54 3.03 3.07 4.00 3.85
Jun-1996 3.39 3.47 3.56 3.73 3.43 3.52 3.04 3.11 4.39 3.91
Jun-1997 3.32 3.47 3.58 3.83 3.47 3.55 3.10 3.16 4.56 4.15
Jun-1998 3.46 3.54 3.64 3.89 3.81 3.82 3.33 3.39 4.56 4.18
Jun-1999 3.79 3.79 3.87 4.09 3.83 3.84 3.34 3.38 4.98 4.57
Jun-2000 3.70 3.73 3.83 4.02 3.78 3.84 3.33 3.33 5.26 4.93
Jun-2001 3.69 3.80 3.92 3.99 3.74 3.88 3.31 3.30 5.40 4.91
Jun-2002 3.76 3.91 4.01 4.07 3.99 4.14 3.55 3.52 6.14 5.41
Jun-2003 4.29 4.37 4.48 4.63 4.52 4.70 4.01 3.93 6.63 5.83
Jun-2004 4.78 4.90 5.02 5.25 5.10 5.32 4.56 4.46 7.97 6.98
Jun-2005 5.38 5.61 5.76 6.00 5.71 5.97 5.11 4.98 8.60 7.75
Jun-2006 6.02 6.31 6.50 6.80 6.33 6.62 5.68 5.52 10.18 9.06
Jun-2007 6.75 6.92 7.15 7.45 7.11 7.34 6.27 6.11 10.54 9.74
Jun-2008 7.54 7.70 7.92 8.24 7.34 7.66 6.57 6.31 11.53 10.39
Jun-2009 7.22 7.55 7.79 8.04 7.28 7.62 6.52 6.27 11.05 10.01
Jun-2010 7.11 7.37 7.57 7.95 7.38 7.67 6.54 6.37 10.74 9.33
Jun-2011 7.34 7.79 8.04 8.22 6.96 7.49 6.39 6.01 12.32 11.28
Jun-2012 6.86 7.62 7.89 7.83 7.12 7.54 6.43 6.01 12.28 11.15
Jun-2013 7.39 7.87 8.12 8.17 7.34 7.60 6.58 6.27 11.87 11.36
Jun-2014 7.45 7.83 8.12 8.31 7.63 7.81 6.75 6.48 12.66 11.26
Jun-2015 8.06 8.39 8.60 8.92 8.10 8.21 7.08 6.76 13.51 12.32
Jun-2016 8.67 8.83 9.11 9.39 8.65 8.67 7.48 7.15 15.09 13.73
Jun-2017 9.13 9.53 9.78 9.70 9.07 9.28 8.00 7.71 16.32 14.89
Jun-2018 9.56 10.29 10.60 10.53 9.72 9.83 8.56 8.24 16.84 15.49
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Table B.5 – Queensland price indexes, 1983–1984 to 2017–2018

Financial Time Dummy Method Hedonic Imputation Method Sample
year ending model 1 model 2 model 3 model 4 model 1 model 2 model 3 model 4 mean median
Jun-1984 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Jun-1985 1.03 1.04 1.05 1.05 1.02 1.03 1.05 1.05 1.15 0.96
Jun-1986 1.03 1.05 1.06 1.06 1.03 1.04 1.07 1.06 1.10 1.03
Jun-1987 1.10 1.13 1.12 1.12 1.06 1.10 1.13 1.14 1.10 1.06
Jun-1988 1.01 1.03 1.02 1.04 1.06 1.10 1.15 1.14 1.10 1.07
Jun-1989 1.10 1.15 1.14 1.15 1.03 1.07 1.12 1.12 1.40 1.38
Jun-1990 1.22 1.28 1.26 1.26 1.11 1.16 1.21 1.24 1.50 1.38
Jun-1991 1.23 1.32 1.29 1.31 1.17 1.25 1.28 1.32 1.44 1.36
Jun-1992 1.20 1.29 1.24 1.26 1.16 1.25 1.28 1.32 1.50 1.37
Jun-1993 1.28 1.34 1.30 1.32 1.18 1.25 1.29 1.34 1.50 1.39
Jun-1994 1.35 1.40 1.36 1.38 1.24 1.32 1.35 1.41 1.55 1.50
Jun-1995 1.46 1.50 1.46 1.49 1.33 1.40 1.43 1.50 1.75 1.66
Jun-1996 1.57 1.61 1.56 1.59 1.43 1.52 1.54 1.62 2.00 1.86
Jun-1997 1.54 1.61 1.55 1.59 1.45 1.54 1.56 1.62 1.85 1.81
Jun-1998 1.54 1.62 1.56 1.58 1.44 1.56 1.55 1.60 1.95 1.94
Jun-1999 1.66 1.74 1.67 1.70 1.51 1.65 1.64 1.68 2.10 1.95
Jun-2000 1.52 1.62 1.57 1.60 1.50 1.62 1.64 1.66 2.00 2.01
Jun-2001 1.55 1.64 1.59 1.61 1.46 1.63 1.62 1.64 2.10 2.11
Jun-2002 1.67 1.72 1.67 1.70 1.54 1.69 1.68 1.73 2.10 1.97
Jun-2003 1.76 1.80 1.73 1.77 1.65 1.77 1.76 1.83 2.20 2.28
Jun-2004 1.82 1.87 1.79 1.84 1.72 1.85 1.83 1.91 2.63 2.72
Jun-2005 2.19 2.29 2.20 2.25 1.92 2.06 2.06 2.14 3.00 3.03
Jun-2006 2.53 2.65 2.53 2.61 2.24 2.45 2.42 2.52 3.60 3.80
Jun-2007 2.86 2.98 2.83 2.90 2.57 2.81 2.78 2.90 4.00 4.25
Jun-2008 3.33 3.50 3.30 3.39 2.95 3.21 3.19 3.30 4.95 5.19
Jun-2009 3.48 3.69 3.54 3.64 3.24 3.56 3.51 3.68 4.75 4.70
Jun-2010 3.53 3.78 3.54 3.61 3.33 3.70 3.62 3.69 4.60 4.40
Jun-2011 3.46 3.77 3.55 3.66 3.34 3.73 3.61 3.71 4.80 4.46
Jun-2012 3.32 3.71 3.48 3.54 3.23 3.73 3.57 3.63 4.54 4.87
Jun-2013 3.45 3.69 3.46 3.56 3.27 3.67 3.52 3.65 5.20 4.80
Jun-2014 3.32 3.57 3.34 3.43 3.26 3.60 3.47 3.61 4.95 4.59
Jun-2015 3.52 3.69 3.44 3.53 3.23 3.52 3.41 3.55 4.95 4.63
Jun-2016 3.51 3.73 3.49 3.60 3.27 3.54 3.48 3.65 5.22 5.03
Jun-2017 3.71 3.90 3.68 3.80 3.37 3.68 3.64 3.80 5.76 5.75
Jun-2018 4.01 4.19 3.97 4.05 3.58 3.91 3.83 3.96 6.22 5.73
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Table B.6 – SA price indexes, 1995–1996 to 2017–2018

Financial Time Dummy Method Hedonic Imputation Method Sample
year ending model 1 model 2 model 3 model 4 model 1 model 2 model 3 model 4 mean median
Jun-1995 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Jun-1996 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.95 1.12 1.10
Jun-1997 0.97 0.98 0.97 0.99 1.00 1.00 0.99 0.99 1.25 1.20
Jun-1998 1.04 1.05 1.05 1.08 1.11 1.11 1.11 1.11 1.30 1.26
Jun-1999 1.22 1.23 1.24 1.26 1.15 1.14 1.16 1.16 1.30 1.34
Jun-2000 1.14 1.13 1.16 1.18 1.08 1.08 1.09 1.08 1.35 1.36
Jun-2001 1.07 1.09 1.11 1.14 1.01 1.02 1.00 0.97 1.45 1.43
Jun-2002 1.06 1.08 1.08 1.11 1.06 1.07 1.05 1.01 1.60 1.57
Jun-2003 1.23 1.25 1.26 1.30 1.27 1.30 1.31 1.26 1.75 1.68
Jun-2004 1.43 1.45 1.47 1.50 1.48 1.50 1.51 1.45 2.10 2.09
Jun-2005 1.67 1.70 1.73 1.79 1.66 1.70 1.70 1.63 2.60 2.45
Jun-2006 1.80 1.85 1.87 1.93 1.86 1.91 1.89 1.82 2.82 2.62
Jun-2007 2.15 2.20 2.23 2.29 2.06 2.12 2.12 2.05 3.04 2.94
Jun-2008 2.16 2.22 2.29 2.34 2.11 2.18 2.20 2.14 3.20 3.07
Jun-2009 2.20 2.26 2.30 2.39 2.11 2.16 2.17 2.10 3.50 3.01
Jun-2010 2.22 2.32 2.32 2.38 1.86 1.93 1.93 1.88 3.50 3.25
Jun-2011 2.03 2.10 2.14 2.22 1.71 1.71 1.72 1.70 3.66 3.23
Jun-2012 1.94 2.01 2.05 2.14 1.77 1.78 1.80 1.77 3.50 3.25
Jun-2013 2.13 2.20 2.21 2.27 1.91 1.92 2.00 1.98 3.50 3.25
Jun-2014 2.01 2.09 2.12 2.20 1.94 1.94 2.02 2.04 3.55 3.03
Jun-2015 2.17 2.25 2.26 2.36 1.99 1.98 2.06 2.08 3.50 3.24
Jun-2016 2.23 2.28 2.28 2.35 2.01 2.00 2.11 2.12 4.00 3.76
Jun-2017 2.08 2.18 2.20 2.29 2.00 2.01 2.14 2.16 3.60 3.39
Jun-2018 2.07 2.18 2.17 2.27 2.24 2.30 2.41 2.40 3.75 3.43
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Table B.7 – WA price indexes, 1988–1989 to 2017–2018

Financial Time Dummy Method Hedonic Imputation Method Sample
year ending model 1 model 2 model 3 model 4 model 1 model 2 model 3 model 4 mean median
Jun-1989 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Jun-1990 0.85 0.85 0.83 0.83 1.12 1.12 1.07 1.07 1.10 1.05
Jun-1991 1.09 1.07 1.05 1.06 1.13 1.13 1.07 1.05 1.21 0.99
Jun-1992 0.89 0.89 0.88 0.88 1.11 1.11 1.04 1.03 1.15 0.90
Jun-1993 0.98 0.99 0.99 0.99 1.20 1.20 1.15 1.13 1.30 1.02
Jun-1994 1.10 1.09 1.06 1.05 1.29 1.29 1.22 1.19 1.28 1.04
Jun-1995 1.23 1.17 1.11 1.10 1.43 1.43 1.36 1.32 1.43 1.20
Jun-1996 1.38 1.33 1.28 1.27 1.55 1.55 1.48 1.43 1.65 1.47
Jun-1997 1.38 1.41 1.40 1.40 1.61 1.61 1.57 1.51 1.80 1.51
Jun-1998 1.50 1.49 1.45 1.44 1.81 1.81 1.75 1.65 2.00 1.70
Jun-1999 1.76 1.71 1.67 1.66 1.82 1.82 1.77 1.67 2.12 1.87
Jun-2000 1.55 1.57 1.54 1.54 1.75 1.75 1.71 1.64 2.30 2.00
Jun-2001 1.68 1.68 1.64 1.63 1.90 1.90 1.88 1.81 2.40 2.01
Jun-2002 1.88 1.80 1.72 1.72 2.06 2.06 2.04 1.96 2.20 1.88
Jun-2003 2.03 1.90 1.80 1.79 2.11 2.11 2.09 2.01 2.25 1.91
Jun-2004 2.01 1.96 1.84 1.83 2.19 2.19 2.17 2.11 2.32 1.94
Jun-2005 2.20 2.15 2.03 2.02 2.48 2.48 2.45 2.39 2.60 2.45
Jun-2006 2.53 2.51 2.38 2.39 2.91 2.91 2.89 2.82 3.03 2.85
Jun-2007 2.99 2.95 2.81 2.80 3.59 3.59 3.55 3.47 3.65 3.21
Jun-2008 3.65 3.53 3.31 3.33 3.92 3.92 3.91 3.86 4.50 3.64
Jun-2009 3.69 3.65 3.54 3.54 3.93 3.93 3.99 3.97 4.75 4.33
Jun-2010 3.56 3.58 3.45 3.45 3.84 3.84 3.87 3.87 4.20 3.48
Jun-2011 3.75 3.58 3.40 3.43 3.78 3.78 3.94 3.89 3.88 3.28
Jun-2012 3.48 3.35 3.17 3.18 3.43 3.43 3.59 3.52 4.70 3.68
Jun-2013 3.17 3.13 3.01 3.04 3.42 3.42 3.59 3.53 4.45 3.41
Jun-2014 3.31 3.23 3.07 3.10 3.38 3.38 3.53 3.49 4.30 3.30
Jun-2015 3.13 3.08 2.94 2.96 3.44 3.44 3.56 3.51 4.45 3.32
Jun-2016 3.40 3.26 3.03 3.05 3.52 3.52 3.63 3.59 4.30 3.29
Jun-2017 3.18 3.12 2.97 2.97 3.39 3.39 3.55 3.47 4.80 3.82
Jun-2018 3.16 3.20 3.12 3.11 3.54 3.54 3.69 3.62 5.30 3.89
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Table B.8 – Tasmania price indexes, 1988–1989 to 2017–2018

Financial Time Dummy Method Hedonic Imputation Method Sample
year ending model 1 model 2 model 3 model 4 model 1 model 2 model 3 model 4 mean median
Jun-1989 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Jun-1990 1.26 1.27 1.29 1.29 1.19 1.18 1.19 1.19 1.18 1.21
Jun-1991 1.44 1.44 1.45 1.43 1.23 1.22 1.23 1.22 1.19 1.08
Jun-1992 1.34 1.35 1.34 1.32 1.18 1.18 1.19 1.18 1.01 1.01
Jun-1993 1.33 1.34 1.37 1.37 1.21 1.20 1.22 1.25 1.29 1.20
Jun-1994 1.37 1.37 1.40 1.41 1.32 1.31 1.33 1.33 1.23 1.24
Jun-1995 1.55 1.54 1.53 1.53 1.42 1.41 1.43 1.46 1.43 1.37
Jun-1996 1.70 1.69 1.66 1.66 1.49 1.48 1.50 1.55 1.57 1.39
Jun-1997 1.64 1.64 1.67 1.66 1.42 1.46 1.44 1.48 1.55 1.56
Jun-1998 1.69 1.70 1.70 1.69 1.38 1.42 1.39 1.41 1.66 1.52
Jun-1999 1.58 1.57 1.56 1.54 1.40 1.45 1.44 1.44 1.61 1.41
Jun-2000 1.79 1.78 1.75 1.72 1.51 1.56 1.54 1.55 1.61 1.55
Jun-2001 1.95 1.93 1.91 1.87 1.58 1.65 1.61 1.64 1.79 1.69
Jun-2002 1.97 1.96 1.96 1.94 1.62 1.69 1.65 1.71 2.15 1.93
Jun-2003 1.97 1.98 1.97 1.96 1.72 1.79 1.76 1.80 2.03 1.88
Jun-2004 2.09 2.10 2.09 2.09 1.87 1.96 1.93 1.97 2.09 2.07
Jun-2005 2.32 2.32 2.34 2.33 2.00 2.10 2.06 2.11 2.00 2.04
Jun-2006 2.47 2.47 2.49 2.47 2.42 2.52 2.48 2.55 2.63 2.60
Jun-2007 3.57 3.54 3.46 3.48 3.23 3.28 3.29 3.44 3.24 3.44
Jun-2008 3.84 3.80 3.74 3.77 3.38 3.41 3.44 3.63 3.58 3.68
Jun-2009 3.84 3.81 3.77 3.78 3.40 3.44 3.46 3.64 4.14 4.07
Jun-2010 3.88 3.89 3.87 3.88 3.03 3.07 3.17 3.40 3.97 3.29
Jun-2011 3.45 3.47 3.57 3.57 3.07 3.14 3.26 3.45 3.55 3.15
Jun-2012 3.84 3.86 3.97 3.98 2.95 3.01 3.20 3.39 3.94 3.44
Jun-2013 3.63 3.64 3.64 3.69 2.66 2.73 2.93 3.08 4.18 3.43
Jun-2014 3.37 3.39 3.45 3.45 2.66 2.73 2.91 3.14 3.64 3.41
Jun-2015 3.32 3.31 3.42 3.42 3.11 3.23 3.44 3.74 3.20 3.23
Jun-2016 4.03 3.97 3.87 3.91 3.44 3.73 3.87 4.16 4.08 3.86
Jun-2017 4.14 4.15 4.17 4.24 3.44 3.76 3.88 4.12 4.30 3.83
Jun-2018 4.12 4.16 4.29 4.36 3.90 4.02 4.31 4.50 4.33 3.89
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B.3 Hedonic Regression Models: State-level

Coefficients

This appendix provides a more detailed discussion of the regression coefficients at the

state level. It also offers a closer look at the differences in dynamics between methods

by analysing the volatility of the regression coefficients. The time-dummy model assumes

that regression coefficients of characteristics remain stable over time, while the imputation

method allows the coefficient to evolve over time.

B.3.1 State-level regression results

Table B.9 presents a sample set of results by state for Model 2. Across all states, all

characteristic variables in the model are statistically significant. In particular, the presence

of a house or shed on the land appears to be significant and positive. A large house

or residence (in terms of the number of bedrooms and bathrooms) appears to be more

critical in NSW, and a high number of buildings (that is, sheds and houses) appear equally

relevant to value in Victoria. Agricultural land in all states is price sensitive to size, such

that increasingly large farms may attract lower values on a price-per-hectare basis.

Increased distance from the nearest road and the nearest town with a population of

over 10,000 negatively affects land value, suggesting that increased remoteness is an

adverse land-value driver. Land values in all states also appear to be somewhat driven

by favourable climatic conditions, with increased average rainfall being both positive

and significant. Conversely, high average maximum temperatures appear to drive value

downwards considerably across all states, along with high risk of wind, water and acid

erosion in terms of agricultural land.

Production type also appears to be essential to value, with cropping farms positively

affecting value compared to grazing land in some states (NSW, Queensland and SA).

It seems that desirable cropping areas in some states attract higher values, particularly

when compared to less desirable grazing areas where climate conditions are hotter and

dryer. The relatively different explanatory power, as indicated by the adjusted R-squared

values, may imply a relatively heterogeneous market for agricultural land.
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Table B.10 compares the R-squared for Models 1 and 2 by period and by state.

The explanatory power by period under the hedonic imputation method is extremely

volatile from year to year. As such, the Breusch–Pagan test was utilised to test for

heteroscedasticity. The results indicate these models suffer from heteroscedasticity.
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Table B.10 – R-squared comparison for Models 1 and 2 (state level)

Financial NSW Vic Qld SA WA Tas
year ending M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2
Hedonic-imputation
Jun-1975 0.64 0.76
Jun-1976 0.59 0.71
Jun-1977 0.60 0.69
Jun-1978 0.64 0.75
Jun-1979 0.64 0.72
Jun-1980 0.66 0.72
Jun-1981 0.60 0.68
Jun-1982 0.65 0.70 0.50 0.55
Jun-1983 0.63 0.70 0.50 0.56
Jun-1984 0.60 0.67 0.53 0.57
Jun-1985 0.55 0.76 0.46 0.51
Jun-1986 0.70 0.87 0.48 0.57
Jun-1987 0.59 0.80 0.54 0.58
Jun-1988 0.51 0.72 0.45 0.62 0.60 0.63 0.78 0.79 0.67 0.68
Jun-1989 0.68 0.81 0.48 0.62 0.49 0.54 0.67 0.68 0.75 0.75
Jun-1990 0.47 0.61 0.42 0.59 0.49 0.52 0.65 0.67 0.62 0.63
Jun-1991 0.57 0.66 0.33 0.55 0.50 0.53 0.59 0.62 0.61 0.61
Jun-1992 0.56 0.62 0.38 0.51 0.44 0.47 0.62 0.65 0.72 0.72
Jun-1993 0.54 0.63 0.44 0.53 0.49 0.52 0.68 0.70 0.57 0.57
Jun-1994 0.53 0.56 0.37 0.50 0.44 0.46 0.70 0.73 0.65 0.66 0.63 0.64
Jun-1995 0.44 0.48 0.43 0.51 0.45 0.47 0.70 0.72 0.69 0.70 0.58 0.58
Jun-1996 0.52 0.55 0.41 0.51 0.45 0.48 0.72 0.73 0.65 0.67 0.71 0.71
Jun-1997 0.53 0.55 0.36 0.50 0.46 0.51 0.66 0.69 0.66 0.68 0.57 0.57
Jun-1998 0.49 0.52 0.44 0.55 0.48 0.53 0.63 0.64 0.61 0.61 0.52 0.52
Jun-1999 0.48 0.51 0.45 0.52 0.51 0.56 0.68 0.70 0.71 0.72 0.56 0.56
Jun-2000 0.52 0.55 0.38 0.52 0.53 0.55 0.73 0.75 0.63 0.63 0.61 0.61
Jun-2001 0.53 0.55 0.33 0.48 0.48 0.51 0.63 0.67 0.70 0.71 0.57 0.59
Jun-2002 0.49 0.51 0.37 0.49 0.53 0.55 0.63 0.66 0.69 0.69 0.57 0.58
Jun-2003 0.47 0.50 0.33 0.43 0.51 0.53 0.64 0.66 0.65 0.66 0.62 0.62
Jun-2004 0.52 0.55 0.30 0.41 0.49 0.53 0.59 0.62 0.68 0.69 0.52 0.52
Jun-2005 0.52 0.55 0.37 0.48 0.49 0.52 0.59 0.63 0.67 0.68 0.65 0.65
Jun-2006 0.51 0.55 0.33 0.45 0.43 0.45 0.62 0.65 0.58 0.58 0.56 0.56
Jun-2007 0.55 0.58 0.32 0.44 0.38 0.45 0.64 0.67 0.62 0.63 0.43 0.43
Jun-2008 0.53 0.55 0.40 0.51 0.42 0.43 0.58 0.61 0.61 0.61 0.45 0.45
Jun-2009 0.47 0.50 0.36 0.47 0.31 0.34 0.60 0.64 0.68 0.68 0.46 0.46
Jun-2010 0.47 0.50 0.37 0.48 0.34 0.37 0.64 0.69 0.56 0.56 0.56 0.56
Jun-2011 0.52 0.55 0.37 0.50 0.49 0.55 0.60 0.65 0.64 0.64 0.34 0.32
Jun-2012 0.52 0.54 0.41 0.53 0.38 0.43 0.72 0.76 0.61 0.61 0.54 0.53
Jun-2013 0.56 0.59 0.38 0.51 0.50 0.53 0.67 0.70 0.57 0.58 0.62 0.62
Jun-2014 0.58 0.60 0.39 0.51 0.45 0.50 0.64 0.67 0.62 0.63 0.57 0.58
Jun-2015 0.59 0.61 0.44 0.55 0.44 0.51 0.65 0.72 0.62 0.62 0.58 0.59
Jun-2016 0.60 0.62 0.44 0.54 0.47 0.51 0.68 0.71 0.69 0.69 0.63 0.63
Jun-2017 0.59 0.61 0.39 0.53 0.46 0.49 0.74 0.76 0.58 0.57 0.56 0.60
Jun-2018 0.60 0.62 0.41 0.54 0.42 0.45 0.74 0.76 0.64 0.64 0.59 0.60
Average 0.54 0.59 0.46 0.58 0.47 0.51 0.66 0.69 0.65 0.65 0.58 0.58
Time-dummy 0.61 0.62 0.67 0.72 0.60 0.64 0.70 0.72 0.70 0.71 0.64 0.69

130



B.3.2 State-level coefficients: time-dummy v. imputation

method

The time-dummy method essentially is a pooled regression model with no time-varying

(fixed effects) variables, other than dummies for time. This section examines the stability

of estimated coefficients of variables in the models over time. We observe whether holding

the coefficient stationary over time is a valid assumption. Figures B.1 to B.7 show selected

double-imputation coefficients of Model 2 for each state.

Interestingly, the coefficients across all six states for the soil quality variables, ErACID,

ErWATER, ErWIND, minTEMP, maxTEMP and avgRAIN are very close to 1 over time.

However, the coefficients for maxTEMP and avgRAIN are more volatile. This suggests

that weather patterns have a significant effect on land values and this pattern is not

constant over time.

We observe relatively stable coefficients for DIST and TKM10 over time. The access to

water (WATm2) over time is volatile which may reflect the greater importance of water

access in times of drought.

The estimated coefficient for the dummy variable LandUse are compared to Vacant Land.

The LandUse variable can be somewhat tricky to interpret because it was constructed

using CoreLogic sales data. This information is collected from each state’s Valuer-General

(land registry office) where each state has different levels of details and labels for land use.

For example, Western Australia only has a handful of records that label land use for beef

grazing, with the majority of records labelled as ‘farming’. Given that different land uses

have a different effect on land values, we avoid comparison across states. In New South

Wales, horticulture is the most volatile over time and contributes significantly to land

value. For Victoria, Tasmania and Queensland, the pattern is volatile but more uniform

across land-use categories, perhaps signalling substitutability of land use implying less of

a premium in land prices in these states for land-use type.
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B.4 GAMs: Smoothing Function

This section provides details on how the GAMs were selected, as well as an overview of

smoothness selection. It also discusses the selection process of the independent terms in

the models.

GAM is a generalised linear model, whereby the linear predictor is explained using a

combination of the linear predictor and a specified sum of smooth functions of the

covariates. GAMs provide an effective way of fitting more flexible, nonlinear models

using smooth techniques, as a mixture of linear and nonlinear terms can be specified. The

nonlinear terms can be in the form of smoothing splines, natural cubic splines, polynomial

functions and step functions.

The idea of splines is to fit smooth, nonlinear functions on several predictors Xi. Where

a smooth function is applied in the model fitting, the maximum likelihood estimation of

this model would produce over-fitting estimates. Thus, GAMs are usually fitted using a

penalised likelihood maximisation, where likelihood in the model is altered by a penalty

for each smooth function to penalise its ‘wiggliness’. The trade-off between penalising

wiggliness and penalising model fit is controlled by a penalty, multiplied by an associated

smoothing parameter.

B.5 Smoothness Selection Criteria

GAM endeavours to determine the appropriate smoothing parameter for each nonlinear

predictor by applying a likelihood-based method or prediction error criteria. The

prediction error criteria applied are the GCV criterion when k, the scale parameter, is

unknown (as shown in Eq. B.1) or an unbiased risk estimator (UBRE) criterion when k

is known (as in Eq. B.2).1

n
Z

(n− d)2
(B.1)

1Craven and Wahba (1979) and Wahba (1990) provide a detailed discussion of generalised
cross-validation and unbiased risk estimators.
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Z

n
+ 2k

d

n− k
(B.2)

where n is the number of data, k the scale parameter, Z is the deviance, and d the effective

degrees of freedom of the model. It is worth noting that UBRE is essentially AIC rescaled,

but only when k is known.

Likelihood-based methods used are the restricted maximum likelihood (REML) for the

selection of smoothness. REML treats the smooth components in the model as random

effects. Thus, the variance for the smooth random effect is derived by a scale parameter,

divided by the parameter for smoothing. When there are smooth components with more

than one penalty, there will be multiple variance components.

The choice of k is important, but the critical observation is that k needs to be large

enough to capture the dimensionality of the underlying function. The GCV and UBRE

scores sometimes display local minima if they become constant with changing smoothing

parameters. These ‘flat’ areas can be separated from lower-score areas by a small ‘lip’.

While this appears to be the most common local minimum form, it can be avoided by

removing extreme smoothing parameters in optimisation, and by avoiding large jumps

in smoothing parameters during the optimising process. In the literature, Wood (2011)

and others have proven REML to be much more robust under smoothing, as it is less

decumbent to local minima than other criteria, but at a computational expense.

B.6 Testing Other Models

We undertook robustness checks to test the sensitivity of our results to the models selected.

First, we removed a number of abnormal transactions (for example, transactions of rural

properties where mainland use is not generally associated with agricultural production).

We noticed that substantial variation in land prices remains. To minimise the effect of

outliers, several observations in the sample were removed and the regression equations

were re-estimated. The results from the outliered sample were generally consistent with

those from the non-outliered sample.

To determine the sensitivity of the model results to the choice of variables, the regression
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equations were re-estimated with different dependent variables. The effect of different

hedonic models on agricultural land price using subsamples and using various functional

forms were also estimated. Some variables included were availability of water capacity

in the top 5 inches, distance from the farm to the nearest town centre, topsoil depth,

and different interactive terms. The distance from the farm to the nearest town centre

and the available water capacity were not statistically significant in all the models. The

statistical insignificance could relate to their respective interactions with other variables

in the model (such as rainfall), and the fact that the exact location coordinate is included.

In addition, the irrigation dummy was not statistically significant in the state models. An

explanation for this result is that land that requires drainage is already irrigated within

that region, thus, it does not contribute to the price of the land.

One of the most common ways for deciding which predictors to select is to compare

GCV, UBRE and REML scores for the models, including and excluding the term. For

example, we can compare the score for the model containing a smooth term with the score

where the smoothing term is replaced by parametric terms. Dependant variables that

could be removed can also be identified by observing the confidence band for estimated

terms and by reference to the approximate p-values. While it is possible to undertake

backward selection2 using p-values, this method suffers from similar problems as stepwise

procedures, with the extra caveat that p-values are only an approximate.

2Backward selection involves sequentially removing a variable with the largest non-significant p-value
and refitting the model until all variables are significant.
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Appendix C

Appendix for Chapter 4

C.1 Measuring land degradation

Land degradation is defined as a decrease in the quality of land and hence, its value.

The degradation of farmland is of particular importance as this affects agricultural

productivity. It can also lead to clearance of forests and native grasslands, loss of amenity

values, offsite pollution, and increased use of other natural resources to repair the land

(for example, water for reducing irrigation, salinity or lime for neutralising acidity).

The value of land reflects its productive capacity and the environmental services

it provides. Market values are the preferred measure for valuing agricultural land.

Nevertheless, market value includes considerations other than the land’s productive

capacity, such as input and commodity prices, ‘lifestyle’ and zoning considerations. Thus,

it is inappropriate to value land degradation based on changes in the market value.

Two Australian studies have used alternative concepts to measure economic losses due to

land degradation. First, Kemp and Connell (2001) estimated change in the capital value

of farms adjusted for degradation. They considered that this value represents the total

accumulated losses in the value of farmland due to degradation. In another study, the

National Land and Water Resources Audit (2002) estimated the value of soil degradation

on lost profit at full equity. In their estimates, they included a resource rent and a

return to owner for use of produced capital. The resource rent comprised a component

for resource depletion and a return to owner for non-produced capital use.
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The ABS (2010) released estimates for depletion-adjusted GDP that account for land

degradation and depletion of subsoil assets. The method used for estimating annual

change in land value due to degradation assumed that degradation occurs at a constant

rate. Constant prices of land were derived by applying an appropriate deflator to the

current price time series.

The chosen deflator was the chain volume price index for GDP. The reason behind

this choice was that it provides a more stable time series than agricultural income-type

deflators. It should be noted that these estimates are not included in official national

accounts statistics because the national accounts framework does not treat land

degradation as a transaction.
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